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SUMMARY  

Large area high throughput metrology plays an important role in several technologies 

like MEMS. In current metrology systems the parallel operation of multiple metrology 

probes in a tool has been hindered by their bulky sizes. This study approaches this 

problem by developing a metrology technique based on miniaturized scanning grating 

interferometers (µSGIs). Miniaturization of the interferometer is realized by novel 

micromachined tunable gratings fabricated using SOI substrates. These stress free flat 

gratings show sufficient motion (~500nm), bandwidth (~50 kHz) and low damping ratio 

(~0.05). Optical setups have been developed for testing the performance of µSGIs and 

preliminary results show 6.6 µm lateral resolution and sub-angstrom vertical resolution. 

To achieve high resolution and to reduce the effect of ambient vibrations, the study has 

developed a novel control algorithm, implemented on FPGA. It has shown significant 

reduction of vibration noise in 6.5 kHz bandwidth achieving 6x10-5 nmrms/√Hz noise 

resolution. Modifications of this control scheme enable long range displacement 

measurements, parallel operation and scanning samples for their dynamic profile. To 

analyze and simulate similar optical metrology system with active micro-components, 

separate tools are developed for mechanical, control and optical sub-systems. The 

results of these programs enable better design optimization for different applications. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

In recent years, growing quality control standards and drive towards miniaturization [1] 

have posed many challenges to the modern spatial metrology. Static as well as dynamic 

spatial metrology has become critical in many applications like vibration analysis, 

precision machining, biomedical applications etc. [2-4] (Figure 1). Micro electro 

mechanical systems (MEMS) like microphones, accelerometers, digital light processing 

DLP® systems and infrared imaging systems etc. are emerging with a need for higher 

precision measurements of the profile and motion of their micro-components [5-8]. Many 

times, measurements need to be taken at multiple points over a large area on the 

sample simultaneously e.g. study of acoustic wave propagation. Many micro-systems 

are manufactured in the form of arrays due to which fast multiple sample metrology has 

become very important for high yields. Multiple point metrology systems are highly 

desired for measurement of such systems. Such multi-probe system with probes 

measuring in parallel gives is useful for improving the yield. Schematic of a multiple point 

metrology probe system is shown in Figure 2. However, these systems are extremely 

challenging because it introduces stringent size constraints on each of the metrology 

probes. 

For most of these systems, non-contact methods are preferred to avoid damage to the 

critical surfaces. However, non-contact methods are prone to environmental vibrations. 

Reduction of vibration noise and positioning errors has posed another challenge for high 

resolution metrology. It is even more challenging to achieve noise reduction in a multi-
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probe metrology system because of the non-uniformity of the noise over the sample 

surface. 

MEMS switch

Micro-waviness on HD

AFM probe dynamics

Micromirror array

 

Figure 1 – Large area high precision metrology applications 

Current Solution Desired Solution

Array of miniaturized 
sensors testing in parallel

Desired Solution

Array of miniaturized 
sensors testing in parallel

 

Figure 2 – Current and desired metrology solutions 
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The bandwidth of the dynamic measurements determines the maximum detectable 

frequency of sample vibrations. Many MEMS like (Radio Frequency) RF-MEMS [9, 10], 

(capacitive Micromachined Ultrasonic Transducers) cMUTs [11] or surface wave profiling 

[12] show bandwidth of several MHz to GHz. Current systems are limited to stroboscopic 

methods for dynamic metrology which has limited bandwidth (a few MHz – discussed in 

CHAPTER 2).  

Thus, several short-comings in the current technology have been responsible for the 

unsatisfied needs for this type of metrology. This research aims to fill some of this gap in 

the technology by further investigating the problem and developing solutions to it. 

1.2 Problem statement 

As mentioned earlier, the current metrology systems lack one or more characteristics 

like high resolution, dynamic measurements, fast, high bandwidth, low noise, long range 

and non-contact operation. The current metrology tools can scan very small areas at a 

time and simultaneous multiple point measurements are not possible because of their 

bulky size. High resolution metrology techniques like AFM are limited in range and often 

are contact-based limiting their use only on hard samples. Non-contact techniques are 

prone to vibration noise which not only distorts the signal but also affects the resolution. 

Dynamic metrology has been limited to stroboscopic methods which are currently limited 

to a few MHz. The growth of MEMS has been suffering from the lack of in-line metrology 

capability [13]. A small metrology tool which can measure large surfaces in a very short 

time can have significant impact on the MEMS fabrication and higher yields may help 

MEMS realize the potential market.  

This study aims to fill some gap in the metrology area by developing a miniaturized 

metrology tool with many desired properties, and which can also be operated in parallel. 
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The research problem involves several engineering fields i.e. mechanical design, MEMS 

fabrication, controls and optics. Hence, the effort is in to subtasks. These tasks aim to fill 

small technology gaps in different fields and may have impact in many different 

technologies. 

� Investigate the feasibility of a tunable grating based µSGI array. Based on the 

feasibility, design a novel array of tunable gratings with sufficient range of motion 

under low actuation voltages, with sufficient dynamic bandwidth, low squeezed 

film damping and flat grating under actuation. Develop a finite element (FE) 

based analysis tool to analyze the static and dynamic performance of the 

designed tunable membrane under actuation. Develop a fabrication scheme for 

the designed µSGIs and implement it. Develop methods to characterize the 

tunable gratings and implement them. This research can be useful for many 

membrane based devices like RF-MEMS [10], microphones [14] etc. and could 

be beneficial to the related technologies. 

� Investigate different control schemes for fast active tuning of the gratings, for 

their ability to significantly reduce the low frequency ambient vibrations. Develop 

a simulation and analysis tool, for design and optimization of the control 

algorithms. Develop the control algorithm to achieve parallel operation. Extend 

the algorithm to deal with the non-linearities incurred with electrostatic actuation 

and measure distances longer than half wavelength. Extend the algorithm to 

obtain reflectivity, vibration amplitude and phase information. Enable scanning of 

samples. 

� Develop optical setups for long range and good lateral resolution. Develop an 

optical analysis tool to aid the design process and optimize performance of the 

setup. This tool may easily be extended for design and analysis of many other 
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similar optical systems. Miniaturize the optical setup and develop process for 

integration. 

� Develop experiments and required setups to demonstrate the capabilities of the 

µSGI using case studies. 

1.3 Thesis outline 

Realizing the benefits of the micro-machined grating interferometers, this study builds on 

the concept of the µSGIs introduced by Kim et al. [15]. CHAPTER 2 reviews the existing 

metrology techniques. It also introduces the concept of diffraction based µSGIs, their 

active control and miniaturized assembly of the components.  

The µSGIs use tunable gratings which can be actuated for noise cancellation. These 

tunable gratings are discussed in detail in CHAPTER 3. It discusses the design of the 

tunable gratings and finite element modeling for simulation of the tunable gratings. It 

also explains the mask layouts and the details of the fabrication process. The fabricated 

tunable gratings are tested and characterized for their static and dynamic performances 

which are also discussed in the chapter.  

CHAPTER 4 discusses the optical setups developed for µSGI experiments. It explains 

the diffraction optics based analysis used for the design of optical setups. It explains the 

design and fabrication of miniaturized setup and characterizes the optical setups.  

CHAPTER 5 discusses different active path stabilization algorithms of the tunable 

gratings. It also introduces a novel active control algorithm for the tunable gratings. A 

model of the control system is built to design an efficient active noise cancellation 

system; the comparison of the results from the simulations and the experimental results 

is discussed in this section.  
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CHAPTER 6  discusses the development of the control algorithm to achieve different 

capabilities. It demonstrates the parallel operation, long range operation and scanning of 

dynamic micro-components.  

CHAPTER 7 details the conclusions, contributions and future work. 
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CHAPTER 2 

LITERATURE REVIEW 

With the drive towards miniaturization and growing quality control standards, metrology 

of micromachined components becomes critical. Tools for metrology of micromachined 

components are primarily derived from the techniques of the semiconductor industry. 

These tools are typically limited to lateral dimensions and are insufficient for measuring 

the overall part geometry of micromachined mechanical components. The 

micromachined components can also have moving parts and the dynamic behavior of 

the component may be critical to the operation. In such cases the metrology tool needs 

to be able to measure the dynamics of the component. This chapter surveys the current 

state of the art in metrology of micromachined components. Each technique is presented 

with its advantages and disadvantages in this context. 

2.1 Existing metrology Techniques 

2.1.1 Scanning Electron microscopy 

One of the primary tools used for analysis of MEMS devices is the scanning electron 

microscope (SEM). SEMs are capable of producing high resolution images of conductive 

objects on the angstrom scale. SEMs operate by scanning a focused beam of high 

energy electrons across a conductive sample contained in a vacuum. As the electron 

beam hits the conductive surface, secondary electrons are knocked loose. These 

secondary electrons are counted and used to create an image of the sample. Current 

commercial SEMs offer 0.4 nm lateral resolution and magnification up to 2 million times 

[16]. An example of three-dimensional image captured by an SEM is shown in Figure 3. 
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Figure 3 – Micromachined grating image by Scanning Electron Microscope 

SEMs scan the sample at video rate hence measurement of high frequency dynamic 

vibrations becomes difficult. The frequencies that are multiples of the video rate can be 

strobed with SEMs. For other frequencies Gilles [17] showed that the amplitude of lateral 

vibrations can be estimated by the blur area to find the Q-factor of dynamic devices in a 

vacuum. Wong [18] implements dynamic stroboscopic in-plane imaging by time-gating 

the secondary electron detector signal to achieve 3.58 MHz bandwidth 24 nm resolution 

dynamic measurements with instantaneous velocities obtained by pixel blurring analysis. 

In another study, Storment, Borkholder et al. [19] noticed warping in delicate MEMS 

devices after imaging them using an SEM. It was noted that the rapid evacuation of the 

chamber before creating the SEM image was most likely the cause of the warping. The 

vacuum requirement also makes operation of SEM difficult. 

An alternative SEM process is called X-SEM. This process is destructive and requires 

the sample to be cross-sectioned. The cross-section is then imaged in an SEM. Often 
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this technique is used to determine sidewall and height characteristics [20]. Lagerquist, 

Bither et al. [21] discuss use of the X-SEM process to characterize top-down SEM 

images, which require interpretation of intensity and are sensitive to sidewall geometry. 

2.1.2 Optical microscopy 

The underlying operating principles for optical microscopes include spatial resolution 

determined by the Rayleigh criterion and detected edge sharpness determined by a 

combination of hardware (e.g. lens type, CCD camera) and lighting conditions (e.g. 

coaxial lighting, ring lighting). 

Optical microscopes have the advantage of being fast and non-destructive. Optical 

microscopes tend to be repeatable for features as small as 0.25 µm. The limiting factors 

for resolution of optical metrology hardware are diffraction and the ability to produce 

images with clear intensity changes. Other significant errors of optical techniques 

typically stem from interference, resonance, shadowing, secondary reflections, and lens 

distortions [22, 23]. 

An important limitation of optical microscopes for inspection is the inability to acquire 

true three-dimensional data. Using a stroboscopic method, in-plane dynamic motions 

can be measured; however, dynamic measurement of out-of-plane dimensions is 

difficult. Petitgrand and Bosseboeuf  [24] showed that an optical microscope can be 

combined with a phase shifting stroboscopic interferometer to obtain sub-nanometer 

resolution three-dimensional dynamic measurements.  

2.1.3 Scanning white light interferometry 

Another method of inspection is scanning white light interferometry (SWLI). Although 

initially developed for surface characterization, such as finding surface roughness, SWLI 

is currently being used to make dimensional measurements of micromachined parts [25]. 
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White light interferometers have sub-nanometer resolution in the scanning direction, at 

best sub-micrometer resolution in the lateral directions, and can be used on a multitude 

of parts with different surface finishes [26]. 

An interferometer works on the principle of interference. Within the objective, a light 

beam is split, with one beam going to the object surface and the other to a reference 

surface. These light waves bounce back and interfere with each other, forming a pattern 

of light and dark bands, called fringes. For scanning interferometers, a piezoelectric 

crystal is used to create small movements in the objective perpendicular to the surface 

of interest. As the reference surface within the objective moves, the result of the 

combination of the reflected light varies. Several images are captured and then 

combined. Based on the interference pattern, or fringes, and the wave length of light 

employed, it is possible to extract coordinate data [27].  

White light is commonly used in scanning interferometers because it allows for higher 

resolution by comparing data from multiple wavelengths. Additionally, it is possible to 

resolve step height changes greater than lambda/4 [28]. SWLI has the ability to quickly 

measure step height changes and deflections. Additionally, when integrated with an 

image processing system, SWLI can provide lateral dimensions. 

Dynamic metrology can be achieved with a white light interferometer using stroboscopic 

illumination.  Veeco’s DMEMS [29] system offers 15 Hz to 1 MHz frequencies and 0.1 

nm scale resolution. The synchronized capture of a set of three-dimensional 

measurement data is used to generate a video. An example of dynamic motion 

measurement is shown in Figure 4, which shows the motion of a cantilever at its 

resonant frequency. 
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Figure 4 – Dynamic metrology by Scanning White Light Interferometry [29] 

2.1.4 Confocal laser scanning microscopy 
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Figure 5 - Confocal Laser Scanning Microscope 

Confocal Laser Scanning Microscopy (CLSM) combines a confocal microscope with a 

scanning system in order to gather a three-dimensional data set. Confocal microscopy is 

different from conventional microscopy in that it creates an image point by point. CLSM 

uses a double pinhole lens system (Figure 5). It allows the system to focus on a single 

plane. A different plane can be imaged by moving the detection pinhole. With a scanning 
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system added, the system has the ability to scan multiple times on different imaging 

planes, resulting in a three-dimensional data set. Dimensional measurements are in the 

range of micro-meters with nanometer accuracy. Scanning can be performed in several 

different ways, it is most often done by moving the beam, which alleviates focus 

problems caused by objective lens scanning and is faster than specimen scanning [30]. 

One of the most important advantages found is the ability of the microscope to measure 

steep slopes, up to almost 90 degrees on a part with minimal surface roughness. This 

measurement requires a high-resolution, high-numerical aperture objective, which has a 

limited lateral measuring field unsuitable for measuring the entire object. Because of this 

limitation, a stitching procedure is needed to combine scans taken with several 

objectives (Sung, et al., 2004; Ulmann, et al., 2003).  

Shin et al, designed and constructed a single-fiber-optic confocal microscope (SFCM) 

with a microelectromechanical system (MEMS) scanner and a miniature objective lens 

[31]. Axial and lateral resolution values for the system were experimentally measured to 

be 9.55 µm and 0.83 µm respectively, in good agreement with theoretical predictions. 

Reflectance images were acquired at a rate of 8 frames per second, over a 140 µm x 70 

µm field-of-view. In anticipation of future applications in oral cancer detection, they 

imaged ex vivo and in vivo human oral tissue with the SFCM, demonstrating the ability of 

the system to resolve cellular detail.  

2.1.5 Scanning probe microscopy 

Scanning probe microscopes (SPMs) offer a high resolution (sub-angstrom) alternative 

to non-contact techniques. The two most widely used SPMs are the scanning tunneling 

microscope (STM) and the atomic force microscope (AFM). The older of the two 

technologies, the STM, uses a metallic probe that is brought into close proximity of a 
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conductive surface so that a small current flows between the probe and surface. The 

current is held constant by a feedback control scheme, allowing the probe to track the 

height of the surface [22]. Sub-angstrom resolution is attainable in the normal direction 

of the surface, and angstrom-scale resolution is attainable in the lateral direction of the 

surface. 

 

Figure 6 – Schematic of Atomic Force Microscope 

Atomic force microscopy is the newer SPM technology and retains the resolution of the 

STM, but is not limited to conductive surfaces [32]. A schematic of AFM is shown in 

Figure 6. The measurements of an AFM are performed with a sharp probe that collects a 

series of line scans across the surface of a part. The topography of the part is measured 

by bringing the probe close to the specimen and measuring the repulsive and attractive 

forces on the probe tip. Though having the advantage of not contacting the surface of 

the specimen and therefore eliminating tip erosion [33], this method has lower resolution 
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and is less stable than either the sliding or tapping modes. The SPMs have atomic 

resolution but are limited to a few micrometers level range [34].   

Dynamic measurements can be achieved by high speed AFMs scanning at fast rate 

using a mechanical feedback loop and resonant scanning mechanism [35]; however this 

is a contact method. Onaran and Van Gorp [6, 36] developed an AFM with force sensing 

integrated readout and active tip (FIRAT) with high bandwidth actuator, high 

interferometric resolution and extended-range. This is an active area of research. 

2.1.6 Scanning laser Doppler vibrometry 

Laser Doppler vibrometry (LDV) is a non-contact vibration measurement technique using 

the Doppler effect. LDV is designed to measure the dynamic motions of components.  

It typically includes two-beam interferometric devices that detect the phase difference 

between an internal reference and the measurement beam. A scanned laser spot 

measures the dynamic profile of a surface under observation. Lawrence et al. used LDV 

to measure the dynamic vibrations of a two-axis micromirror MEMS [37]. 

By itself LDV is insufficient to measure the topography of a sample surface. To complete 

this system, Polytec Inc. combined scanning LDV with a scanning white light 

interferometer [38].  
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2.1.7 Digital holographic microscope systems 

 

Figure 7 – A three-dimensional image of Fresnel lens array captured by digital holographic 

microscope 

Digital holographic systems have been employed for many years to measure vibrating 

devices. In this technique, a digital camera is used to record a hologram produced by 

interfering a high-quality reference beam with a beam reflected from the sample under 

test. As the test object is later deformed, the modified object beam is compared with the 

original digitally recorded hologram, and the deformation can be quantified using 

standard phase-shifting or other interferometric techniques. These systems can 

therefore achieve nm-level measurement of out-of-plane motion of devices. An image of 

a three-dimensional structure captured by a Digital Holographic Microscope (DHM) is 

shown in Figure 7. Using high-speed cameras deformations of up to several thousand 

hertz can be measured. The systems can also be combined with stroboscopic methods 

to measure motions up to several MHz [39]. 

Off-axis configuration enables capturing entire part information by a single image 

acquisition. The image can be reconstructed at any object plane and the DHM can work 

from long distances (20-30 cm). The lateral resolution can be substantially high (i.e. 

~300 nm) and vertical resolution can range from 27 nm [40] to interferometric (0.2 nm). 

However, this resolution is either for static or a low bandwidth measurement. Including 
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the processing time, with 1000 nm lateral resolution, 100 ms is sufficient time to scan 

and reconstruct a 1 mm x 1 mm area. [41]. 

There are different methods of image reconstruction, including the Fresnel-approach, 

Fourier approach, and convolution-approach. Lensless Fourier Holography is the fastest 

and most suitable algorithm for small objects. Lateral resolution ranges from a few 

micrometers to hundreds of micrometers without any additional optics [42]. Phase 

unwrapping is still necessary in digital holography since the fringe-counting problem 

remains.  

In the time averaged Electro-optic holographic microscope (EOHM) (the sample is 

vibrated at one of its resonant frequencies. The sample is exposed for an extended 

period of time (relative to the time period at that frequency) to capture a single image. 

The reconstruction of this image involves interference of all the positions incurred by the 

moving sample. The zero velocity points on the sample lead to the strongest 

contributions to the reconstruction and the maximum velocity points lead to lowest 

contributions. The reconstruction is computationally more involved and is often 

approximated by look-up tables [43]. This method can show the mode shape at a 

particular frequency. It is easy to use this method to find the resonant frequencies and 

mode shapes. The bandwidth of operation is not limited, but in the time domain only one 

frequency can be analyzed in a given measurement. 

The DHM method also may suffer from aberrations such as spherical (for off-axis 

configuration), coma or astigmatism, field curvature, or distortion [44]. 
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2.2 Summary of literature review 

Table 1 – Summary of micro metrology techniques (modified from [39]) 

Method Measurement 
Outputs 

Approximate 
Resolution 

Major 
Advantages 

Major 
Disadvantages 

Key Options 

Optical  
Microscopy  

2D Static  
In-plane 
Dynamic  

X.Y: 0.4µm Lateral 
Motion: 10nm  

Cost. Speed. 
Ease of use. 
Variable fields. 
Long working 
distance. 
Measure through 
glass or films  

No vertical 
information  

Blur analysis 
Strobing.  
Image 
processing. 
Dark-field.   

Scanning  
Electron  
Microscope  

3D Static  X.Y: nm-level Z: 
nm-level  

High aspect ratios  
Variable fields  
Sidewall angles  

Ease of Use, 
Vacuum No 
packaged devices 
No dynamic  

Magnification 
range. stages  

Confocal  
Microscopy  

3D Static  X.Y: 0.4µm, Z: nm-
level  

Ease of Use. 
Variable fields 
High angles  

Vertical resolution 
NA. No dynamic  

Film 
thickness. 
Image 
processing 
automation  

Scanning 
Probe 
Microscopy 

3D Static 
characteristic 
Atomic scale 
roughness  

X,Y: nm-level  
Z: 0.1nm  

Highest lateral 
and vertical 
resolution  
Magnetic. 
electrical 
characterization  

Ease of Use. 
Speed. Vertical 
Range. No 
packaged devices 
No dynamic  

Tapping 
mode. 
Different tip 
geometries, 
enclosure. 
sidewall 
roughness  

Laser Doppler 
Vibrometry  

Out-of-plane 
Dynamic  

X.Y spot size: 
about 1µm  
Out-of-plane 
Motion: 1nm, 
0.1pm/√Hz  

Speed. Out-of-
plane resolution. 
True transient 
motion. 

Sensitive to 
surface texture, 
no static, Out-of-
plane only  

Area scans. 
Different 
frequency 
ranges.  
Strobed 
microscope 
for in-plane  

Digital  
Holographic  
Systems  

In and out of 
plane dynamic 
motion  

X,Y: 1µm Out-of-
plane Motion:  
1nm  

Speed. modal 
analysis  

Not good static 
capability,  

Hologram 
resolution, 
phase and 
amplitude 
capability.  

Scanning 
Optical 
Interferometry  

3D Static,  In-
Plane Dynamic,  
Out-of-Plane 
Dynamic,  

XY: 0.4µm  
Z: <1nm, In-Plane 
Motion: 5nm,Out of 
Plane Motion 1nm   

Can measure 
most required 
parameters  

Angles > 35 
degrees not 
possible. Slower 
for dynamic than 
LDV  

Image 
processing 
Film thickness 
Dynamic 
capability. 
through-glass 
objectives  

(Proposed) 
µSGI 
Miniaturized 
Scanning 
Grating 
Interferometer  

3D static, out-of-
plane dynamic, 
metrology at 
multiple sample 
points 

X,Y: 5µm, Z: 0.8 
A°, 
Motion: Z: 
0.06pm/√Hz  

True transient 
motion, high out 
of plane 
resolution, static 
+ dynamic, 
Parallel 

Angles > 35 
degrees not 
possible 

Active noise 
control, 
custom 
placement 
and 
orientation 
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measurements, 
Size 12mm2 per 
device 

As mentioned earlier, the current metrology systems partially satisfy the requirements 

like high resolution, dynamic measurements, fast, high bandwidth, low noise, long range 

and non-contact operation. Table 1 lists the current metrology techniques and compares 

them based on the parameters under consideration. (Note: For comparison, the last 

rows in these tables list the specifications of the proposed metrology tool, obtained from 

the preliminary results, which are discussed in detail later in this report.) Table 2 lists 

some of the current tools and their specifications.  

Table 2 – Current metrology tools and comparison with the proposed tool 

Static performance Dynamic performance Instrument 

Vertical 
resolution 

Lateral 
resolution 

Field of 
view 

Vertical 
resolution 

Bandwidth 
Benefits Limitations 

Veeco 
DMEMS NT-
3300 [29] 

<1Å  
  

≤1nm 15 Hz to 
1MHz 

Static and 
dynamic 
together. 

Stroboscopic, 
Size 

Wyko 
NT9800 
System [45] 

<0.1nm 0.1 to 
13.2µm 

8.45mm- 
0.05mm 

NA NA 
 

size 124cmX 
77cmX154cm 

HS10 long-
range laser 
scale [46] 

NA NA NA 79 nm NA Up to 60m No static 

TMS-100 
TopMap 
Metro.Lab 
[47] 

20nm 47µm 35mmX22
mm 

NA NA Compact Low 
resolution 

MSV-400 
Microscope 
Scanning 
Vibrometer 
[48]  

 
1µm 100 µm x 

70 µm 
0.1pm/√Hz 20MHz 3D 

Dynamic 
characteri
zation, 
vertical 
resolution 

Limited FOV, 
no static 

Dimension 
5000 
Scanning 
Probe 
Microscope 
[49] 

<0.5 Å in 
acoustic 
hood 

<1.8nm ~90 µm 
square 

1nm 0.1Hz-
5KHz 

Good 
lateral and 
vertical 
resolution 

Contact 
device, size, 
low 
bandwidth, 
slow 

Dektak 150 
[50] 

1Å NA 55mm NA NA 
  

Lyncee Tec 
DHM [51] 

0.2nm 300nm 4.40mm ~1nm 15 fps Good 
lateral and 
vertical 

Low 
bandwidth 
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resolution 
µSGI 
Miniaturized 
Scanning 
Grating 
Interferomet
er array  

<1Å 1µm No limit 
(Discrete 
set of 
points) 

<0.1pm/√H
z 

GHz range Lateral/ve
rtical 
resolution, 
dynamic 
vertical, 
compact, 
flexible 
placement
, parallel 
operation 

Scanning is 
slow 

It can be seen from Table 1 that the conventional scanning optical interferometry is one 

of the ideal metrology systems because it offers high resolution, large bandwidth, phase 

information and is non-contact. It is being used extensively for precise static and 

dynamic displacement metrology. However, it can measure a small area at a time 

(~1mm2) [52] and larger samples are measured by moving the sample relative to the 

interferometer [53, 54] which is relatively slow because of slow mechanical motion of the 

sample. Implementation of multiple-point metrology has been hindered by the bulky size 

of the interferometers. Most of other metrology tools also suffer from large size and 

hence lack parallel operation capability. 

2.3 Miniaturized Scanning Grating Interferometer (µSGI) with tunable 

grating 

To overcome the shortcomings in the current metrology systems, miniaturization of the 

metrology systems is advantageous. Earlier in this project, Kim et al introduced 

micromachined diffraction gratings to miniaturize the laser interferometer. 

Micromachined diffraction gratings have been successfully used for interference based 

miniaturized display systems like Grating Light Valves™, interference based 

miniaturized displacement measurement systems used for Atomic Force Microscopes 

(AFM), optical modulators etc [55-57]. Kim et al successfully used this micromachined 

scanning gratings interferometer (µSGI) to measure both the transient and steady state 

vibrations of MEMS devices with sub nm resolution [54].  
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As mentioned earlier, in most of the conventional non-contact metrology techniques, the 

metrology tool and the sample are mounted on two different stages which make them 

prone to ambient and acoustic vibrations. Several methods have been used to detect 

and reduce the error introduced by environmental vibrations and drifts. These include 

detecting the harmonic distortions by modulating the length of optical fiber, modulating 

the Fabry-Perot cavity [58], modulating the reference position [59]. Other phase-locking 

methods like optical intensity feedback [60] and optical feedback [61] actively tune the 

frequency of the laser to achieve highest sensitivity and vibration reduction. Fringe 

motion has also been used for phase-locking [62]. Fourier analysis techniques to 

separate low frequency error has also been demonstrated [63]. 

Graebner et al demonstrated that a scanning laser interferometer with active noise 

control can reduce the effect of low frequency vibrations successfully [53]. As the 

sensitivity of the optical interferometer depends on the optical path difference, this 

technique enabled phase-locking to the point of highest sensitivity while recording 

measurements. This has the dual benefits of increasing the resolution while reducing the 

impact of vibrations on the system. A resolution of 0.3pm/√Hz and a bandwidth of 6GHz 

was demonstrated using this technique [12]. Optical scanning interferometers are also 

shown to be used for measuring in-plane motion [64, 65]. 

Kim et al implemented the phase-locking to highest sensitivity point and vibration 

reduction by mounting the µSGI on a piezo-electric transducer (PZT). However bulky 

PZTs can not be used to individually tune multiple µSGIs. To solve that problem, a 

tunable (i.e. movable) grating was micromachined on aluminum membrane fabricated on 

a quartz wafer [66].  The tunable membranes showed sufficient displacement range to 

reach the closest highest sensitivity position on the optical curve from any given point. 

The µSGI also demonstrated successful integration of tunable grating array, photo-
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detector array and micro-lenses. However, it suffered from low yield, poor mechanical 

properties, poor optical performance and high squeezed film damping. Active control 

using the tunable gratings could not be successfully implemented on this device. The 

active noise reduction used by Kim et al was based on analog lock-in amplifier based 

harmonic distortion method [53, 54]. However, the analog implementation of the active 

noise reduction scheme is also not suitable for simultaneous operation of multiple 

µSGIs. 

The next section explains the concept of metrology with diffraction grating 

interferometer. It also introduces the active path stabilization for noise reduction and 

sensitivity optimization. 

2.3.1 Diffraction based displacement detection using grating interferometer 

The µSGI is a diffraction-based optical displacement measuring system. Figure 8 shows 

a schematic of the µSGI with photo-detector integration. The main feature of the grating 

interferometer is a phase sensitive optical diffraction grating, wherein the diffraction 

pattern is determined by the distance between a reflective grating and a reflecting 

surface. The µSGIs can also operate in parallel with individual actuation and many 

sample points spread over a large area can be tested simultaneously. 
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Figure 8: Schematic of a single µSGI - the tunable grating micro-interferometer with 

integrated photo-diodes and microlens 

The grating is illuminated by a laser beam as shown in Figure 8. Part of the incident 

beam is diffracted back (shown by orange rays) by the grating fingers and the remaining 

light passes through the spacing between the fingers. This beam reflects back from the 

surface under observation to the grating fingers. A microlens can also be used to focus 

the beam to achieve a good lateral resolution, if required [54, 66]. The reflected light 

(shown by red rays) passing through the grating fingers interferes with the light reflected 

from the fingers generating diffraction orders. A photo-detector (PD) can be used to 

measure the intensity of the 1st order. The intensity of the first order is a function of the 

phase difference between the two interfering light beams and can be used to measure 

the relative displacement between the grating and the sample. The intensity of -1st order 

can also be detected by another photo-detector to obtain higher signal to noise ratio. 
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Figure 9 – Concept of diffraction grating interferometer  

Figure 10 depicts the intensity of a diffraction order as a function of the distance 

between the grating and the surface under observation. In this figure, it can be seen that 

the sensitivity or the slope of the curve changes with the distance between the grating 

and the surface. At the maximum sensitivity point, which is the inflection point, this curve 

is linear and is ideal for the measurements of vibrations of very small magnitudes. Many 

factors like initial positioning, low frequency vibration, uneven profile of the sample 

surface and acoustic noise may shift the distance between grating and sample. This can 

cause a significant change in the sensitivity of the measurements as well as introduce 

errors in the readings. Hence, an active control needs to be implemented to negate 

these effects. 
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Figure 10 - Schematic of the optical intensity curve 

The noise at different locations on the sample can differ. The stage on which the 

samples are mounted may have a tilt. (See Figure 11) The different sample points under 

observation may be fabricated at different heights by design. Hence for array operation, 

disturbances need to be reduced at each of the points under observation 

simultaneously. The tunable grating of µSGI is designed to reduce this effect by 

implementing an active control. Each µSGI has a tunable membrane on which the 

gratings are micromachined that can be displaced with electrostatic actuation as 

described above. This independent actuation capability enables an array of µSGIs to be 

used simultaneously with high sensitivity and reduced noise. 
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Figure 11 – Need for parallel active path stabilization  

As seen in the problem statement, the measurement range is critical for many 

metrological applications. Interferometric readout, as seen in Figure 10, repeats itself 

with half-wavelength pitch. So typically it is required to use a quadrature method to 

measure displacements longer than half-wavelength. The tunable grating makes use of 

the active control algorithm to track the surface motion beyond the limits of half-

wavelength. 

Thus the Micromachined Scanning Grating Interferometer with tunable grating and 

recurrent calibration based method enables parallel operation of miniaturized 

interferometers with high resolution, large bandwidth and long range. Following chapters 

explain different aspects of µSGI in detail. 
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CHAPTER 3 

TUNABLE GRATINGS 

Tunable gratings of the µSGI enable miniaturized method for interferometry. It can be 

tuned by electrostatic actuation which enables active path stabilization for low noise 

operation. This chapter explains the design, fabrication and characterization of tunable 

gratings in detail.  

3.1 Design of tunable gratings 

3.1.1 Design requirements  

For the µSGI to operate properly, a few critical design requirements are identified. The 

maximum sensitivity position on the optical curve repeats every half-wavelength of 

displacement as shown in Figure 10. Hence, the range of displacement of the tunable 

grating needs to be greater than half the wavelength of the laser used (He-Ne laser), i.e. 

greater than 316nm, to achieve a maximum sensitivity position from any position on the 

optical curve. The ambient mechanical vibration noise mostly occurs below 300Hz. 

Hence, the dynamic range or bandwidth of operation should be sufficient to reduce noise 

below approximately 1 kHz. The bandwidth is determined by the first resonance 

frequency, which needs to be more than 20 kHz and the squeezed film damping should 

be negligible in the bandwidth of interest. Actuation voltage range should be easily 

achievable i.e. below 30-40V. The grating needs to be flat, even under actuation for 

good optical performance. The design should also be easy to fabricate so as to have 

good yield. The control algorithm needs to run in parallel for multiple devices and cancel 

noise in the required bandwidth. 
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3.1.2 Quartz based tunable gratings 
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Figure 12 – Quartz based tunable grating made from Aluminum 

Kim et al designed and fabricated the first micromachined tunable gratings [15, 66]. 

These tunable gratings are built on quartz substrate. A fabricated tunable grating is 

shown in Figure 12 and the schematic of the design is shown in Figure 13. This grating 

contains an Aluminum bottom electrode layer on which an insulating Silicon dioxide 

(oxide) layer. Another layer of Aluminum is deposited on a sacrificial photo-resist layer. 

The tunable grating and the membrane are etched on this layer. The grating portion of 

the top aluminum membrane is kept thicker than the rest of the membrane. The grating 

membrane serves as the top electrode and it can be pulled down by electrostatic 

actuation. The thickness of the gratings helps keeping the grating flat when the grating 

membrane is actuated. 
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Figure 13 – Schematic of the quartz based tunable grating 

This quartz based tunable grating achieved sufficient range of motion (0.6 µm) and 20 

kHz bandwidth. Kim et al successfully demonstrated integration of photo-detector chip 

and micro-lenses. External He-Ne laser and lenses were used to illuminate the grating. 

Figure 14 shows an integrated device array wirebonded to a printed circuit board (PCB).  

 

 

Figure 14 – Miniaturized assembly of quartz based tunable grating 

This µSGI suffered from residual stresses on the Aluminum membrane. The membrane 

sagged down due to the stresses when fabricated. The fabrication process was complex 

and it involved 6 masks. The process took long to fabricate and resulted in a low yield. 

The bandwidth of the membrane was limited by squeezed film damping. This damping is 

caused by the air film trapped between the membrane and the substrate. 
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Aluminum was found unsuitable as a structural material. The active path stabilization 

was implemented using external piezoelectric transducer (PZT). The sample was 

mounted on a PZT stage and path stabilization was achieved by actuating the PZT. PZT 

being bulky actuators, array operation of active path stabilization could not be achieved. 

The harmonic distortion error was obtained using analog phase locking circuitry. 

3.1.3 Novel SOI based tunable gratings 
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Figure 15 – Schematic diagram of the tunable membrane fabricated on SOI wafer (a) Cross 

sectional side view (b) Top view 

To overcome the problems faced by quartz based µSGI, the µSGI was redesigned. To 

make the membrane structurally strong and less prone to residual stresses Silicon on 

Insulator (SOI) wafers are chosen. An SOI wafer has been advantageous for MEMS with 

membrane structures because of the excellent mechanical properties of the silicon 

membrane and the embedded sacrificial and insulating buried oxide [67]. The schematic 

of the SOI based tunable grating is shown in Figure 15. The SOI wafer used for 

fabrication has a 2.7µm thick p-doped silicon device layer, a 1µm thick sacrificial silicon 

dioxide layer and a 500µm thick p-doped silicon substrate. The tunable grating is 

fabricated on the silicon membrane layer (or the device layer) and part of the grating 

membrane with etch holes is released by etching the sacrificial oxide underneath. The 
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backside cavity allows the laser beam to pass through the grating. Backside cavity 

reduces the squeezed film damping effect and also significantly reduces stiction during 

release and actuation. The cavity also provides extra range of motion for the grating. 

The silicon membrane is p-doped and acts as one of the electrodes. The substrate is 

also p-doped and serves as the other electrode. These electrodes provide electrostatic 

actuation for the tunable grating. The design does not require any special mask for the 

electrical connections.  

As shown in Figure 15, the tunable membrane is a 500µm x 400µm rectangle holding a 

200µm square grating at the center. Residual stresses and the electrostatic attraction 

force from the substrate electrode make the membrane bow. However the grating on the 

membrane needs to be flat for good optical performance. To solve this problem the 

tunable membranes have a layout to reduce the effect of the residual stresses and 

bending of in the membrane on the grating. The grating is connected to the membrane 

by small connectors or hinges, as shown in the figure, which do not transfer the bending 

moment to the grating. The intention is to get a flat grating throughout the required range 

of membrane deflection. However, the connectors also act as torsion springs which 

gives rise to an unwanted resonance mode in which the grating hinges on the 

connectors. The width of the connector determines the stiffness of the torsion springs 

which in turn determines the resonance frequency of that mode. A wide connector keeps 

the resonance frequency of this unwanted mode greater than the first resonance 

frequency of the membrane which ensures less impact of this unwanted mode on the 

operation of the tunable grating. However, a wide connector is a stiffer torsion spring and 

transfers bending moment from the membrane to the grating. To deal with this trade-off 

a Finite Element (FE) analysis is used and connector-widths ranging from 10µm to 40µm 

are chosen. 
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Gratings of periods ranging from 4µm to 6µm are designed, which give a sufficient (6° to 

9°) angular separation between the diffraction orders for a He-Ne laser. The laser beam 

passing through the microlens undergoes ~30% optical loss and depending on the 

reflectivity of the sample some intensity can also be lost in the reflection [54, 66]. For a 

complete optical interference, i.e. high modulation, the intensities of the two interfering 

beams should be the same. To compensate the losses, the fingers are designed to 

cover only 25% to 40% of the grating area. Etch holes of 4µm square at a period of 

12µm are used as shown in the figure, to facilitate the release of the membrane at 

selected regions. The tunable gratings are laid on 12mm x 12mm chips in the form of 

4x2 and 5x2 arrays. 

3.1.4 FE modeling tool and simulations of µSGI tunable grating 

A finite element model of the grating membrane was built using ANSYS multiphysics. 

This model is used for simulating the mechanical deflections under electrostatic loads, 

squeezed film damping and the dynamic characteristics of the grating membranes. The 

design parameters were optimized using the finite element model. 

Figure 16 shows the top view of the model of the µSGI tunable grating. The region 

shown by different colors indicates the electrode region (where there is substrate 

underneath the membrane) and the non-electrode regions (which hang over the 

backside cavity). The ends of the membrane are clamped at the two ends. The grating is 

simplified to a 5 finger grating keeping the mass constant. This reduces the 

computational complexity of the model. The grating remains flat when it operates in the 

lower frequencies; hence the simplification is not expected to cause a significant effect 

on the grating dynamics when it operates at lower frequencies. 
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Figure 16 – ANSYS multiphysics model of the tunable grating 

Three types of elements are used for this analysis. Mesh200 element is a meshing facet, 

plane42 is a 2D structural solid and solid45 is 3D structural solid. The FE is done in 

µMKS units with the following material properties for Si – density = 2300E-18 units, 

Young’s modulus = 169E3 units and Poisson’s ratio = 0.2. The details of the code are 

given in the appendix 7.1.  

Transducer
elements

Structural
elements

 

Figure 17 – Meshed model showing transducer elements and structural elements 

This code is an iterative simulation tool for electrostatic, static, dynamic FE analysis of 

electro-mechanical components. Multiple loops can be specified for varying dimensions 
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and the deflection or frequency output can be stored in a file named “results”. A sample 

output is also given in the appendix 7.1.  

One example of static characterization is shown in Figure 18, which shows the 

electrostatically actuated tunable grating membrane at 25V bias voltage. It can be seen 

that the membrane bends and the grating remains flat with a displacement of 0.14 µm. 

0.14µm max displacement

 

Figure 18 – Electrostatically actuated membrane with 25V actuation voltage 
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1st mode 54.8 kHz

2nd mode 73.1 kHz

3rd mode 104 kHz

4th mode 135 kHz

 

Figure 19 - First four modes of resonance obtained by FE analysis 

The same FE model is also used for harmonic analyses of the tunable gratings. Fluid 

136 elements are used to simulate the squeezed film damping. The compressive 

residual stress of 12MPa also affects the harmonic response of the membrane. This 

stress was introduced in the length direction by displacing one of the fixed walls by the 

appropriate distance. The mode shape results for the grating resonating at fist four 

modes are shown in Figure 19. It can be seen that the first resonance occurs at around 

54.8 kHz and the mode shape shows a flat vertical displacement of the grating. This 

determines the bandwidth of the actuation for active control of the grating. The second 



www.manaraa.com

35 

mode of resonance occurs at 73.1 kHz where the grating does see-saw motion in the 

width direction and is not useful. The third mode is the see-saw motion of the grating 

about the connectors. The design under consideration has 40 µm wide connectors and 

the resonance mode occurs at around 104 kHz. The fourth resonance mode is as shown 

in the Figure 19 and occurs at 135 kHz. 

The iterative capability of the simulation tool is very useful in optimizing the parameters 

of the structures. An example result from the iterative too is shown in Figure 20. The 

iterative tool enables continuous run of the code without any active user input. It can be 

seen that the displacement reduces as the thickness of the membrane increases. Also, 

the first resonance frequency of the tunable grating increases with the thickness as 

expected. There is a trade-off between these two parameters. For the tunable grating a 

bandwidth of 50 kHz is chosen (~2.5 µm thickness) where the required range of motion 

at 25V is about 0.2 µm, however a voltage range of 10V to 40V is chosen to achieve the 

required range of motion. This is explained in the static characterization of the tunable 

grating. 

The simulated static characterization of the tunable grating is shown in Figure 21. It can 

be seen that the displacement of the grating increases with increase in voltage. The rate 

of change of displacement also increases with the bias voltage, as expected. This is due 

to the electrostatic voltage which applies force has squared proportionality to the bias 

voltage. It collapses at around 55-60V. 
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Figure 20 – Displacement of the grating at 25V vs. membrane thickness  
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Figure 21 – Static response of the grating to the DC bias sweep 

The frequency response of the tunable grating is also obtained from the same model. It 

is shown in Figure 22. It shows first 4 modes of the resonance frequencies. It can be 

seen that the response of the tunable grating is flat in 30 kHz bandwidth. The third mode 



www.manaraa.com

37 

of resonance frequency has high amplitude in the frequency response and it can be 

problematic in the operation of the tunable grating if it is actuated. It is important not to 

measure the vibration amplitudes at the center of the grating. Mode 2 and mode 3 shows 

a zero amplitude node at the center of the grating; hence the peaks could be missed in 

the frequency response. The displacements are obtained at a point at a corner of the 

grating area. For the first 3 mode shapes, this point has the maximum displacement over 

the grating area. For the fourth mode also, this does not represent a zero amplitude 

node. 
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Figure 22 – Simulated frequency response of the tunable grating showing first 4 

resonance modes 

The displacement of this point on the grating is not the correct representation of the 

amplitude of the optical output from the miniaturized interferometer. This is due to the 

fact that the laser beam is aligned with the center of the grating and it is averaged over 
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the cross-sectional area of the beam. The amplitude of the optical output also gets 

affected if the grating tilts or deforms as shown in mode 2, 3 and 4. 

3.2 Micro-fabrication of SOI based tunable gratings 

The fabrication of tunable gratings using Silicon on Insulator wafers uses well 

standardized processes. The tunable gratings are designed to be fabricated in a 2 mask 

process. Two methods of fabricating the tunable gratings were developed. One method 

used Potassium Hydroxide (KOH) based solution for etching the backside cavity. The 

other method uses Induction coupled plasma (ICP) to etch the backside cavity. The ICP 

method was used to fabricate the devices. It is explained in detail in this section. The 

KOH method is briefly described at the end of the ICP method. 

The design of first or the grating mask defines the tunable grating, etch holes, 

membrane and electrode layout. The second or the backside etch mask defines the size 

of the backside cavities. The details of the mask layout are as follows 

3.2.1 Mask 1 layout design 

A mask consists of 32 tunable grating chips as shown in Figure 23. The top row 

containing 4 chips contain large areas of gratings. These gratings have the same period 

as of the tunable gratings and are used for destructive testing to see the cross section of 

the grating under Scanning Electron Microscope. The parallel lines at the top of the 

mask are used for alignment with the wafer flats. This is important in the case of KOH 

etch as it is anisotropic. The 32 chips are divided in to 16 identical pairs of chips in 

Figure 23. The chips have 4x2 arrays or 5x2 arrays of tunable gratings as shown in 

Figure 24. 
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Figure 23 – mask 1 wafer layout  
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Figure 24 – Mask 1 - chip layout 

Each chip is 12 mm x 12 mm in area and has guidelines for dicing at the borders of the 

chips. The chips have alignment marks at the 4 corners and also on both sides of each 

tunable grating. The other relevant dimensions are shown in Figure 24. 
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Figure 25 – Mask 1 - Device layout 

Figure 25 shows the layout of a tunable grating membrane. All dimensions are specified 

in Figure 25 except the connector width which is varied over the tunable gratings in a 

pair of chips. 
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Figure 26 – Etch holes and grating fingers 

Figure 26 shows a close-up of the grating and the etch holes. The etch holes are 4µm x 

4µm in size and placed at a period of 12 µm. The spacing between the etch holes 

determines the etch time for the buried oxide wet etch process to release the 
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membranes. The gratings are designed to have different periods and spacing and the 

details are as follows. 

3.2.1.1 Variation in a chip 

Connector width and the grating finger width and gap are varied as shown below.  The 

grating finger width is varied from 1 µm to 2 µm and the grating period is varied from 4 

µm to 6 µm. The connector width is varied from 10 µm to 40 µm. A set of tunable 

gratings are designed not to have a stress-free gratings where the gratings are directly 

etched on a continuous membrane. These are called the type 1 gratings and the stress 

free gratings are called type 2 gratings and are shown in Figure 27. 

Type 1 membrane Type 2 membrane
 

Figure 27 – Type 1 and type 2 membrane layouts 

Table 3 – Dimensional variation in 5x2 arrays: 

First column devices Second column devices 

finger width, period Connector width Gratings spec Connector width 

1 µm, 4 µm 40 µm 1 µm, 4 µm type 1 
1.5 µm, 4.5 µm 10 µm 1.5 µm, 4.5 µm 20 µm 
2 µm, 5 µm 40 µm 2 µm, 5 µm type 1 
1.5 µm, 5.5 µm 10 µm 1.5 µm, 5.5 µm 20 µm 
2 µm, 6 µm 20 µm 2 µm, 6 µm 20 µm 
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Table 4 – Dimensional variation in 4x2 arrays 

First column devices Second column devices 

finger width, period Connector width finger width, period Connector width 

2 µm, 6 µm 10 µm 2 µm, 6 µm 20 µm 
1.5 µm, 4.5 µm 40 µm 1.5 µm, 4.5 µm type 1 
2 µm, 5 µm 10 µm 2 µm, 5 µm 20 µm 
1.5 µm, 5.5 µm 40 µm 1.5 µm, 5.5 µm type 1 
3.2.2 Mask 2 layout design 

 

Figure 28 – Mask 2 overall layout 

Mask 2 defined the geometries of the backside cavities. Figure 28 shows the overall 

layout of the cavities. It follows the same guidelines of the mask 1. The top row of chips 

does not have backside cavities as those do not contain any tunable gratins. Figure 29 

shows the chip layout for mask 2 for a 5x2 array and a 4x2 array. Note that this is a dark 

field mask – i.e. the regions shown in blue are transparent and the white regions are 

opaque. The chip boundaries are marked with lines made of rectangles orthogonal to the 

boundaries. This enables view of the chip boundaries from the Mask 1 for easy 

alignment. 
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Figure 29 – Chip layout for Mask 2 

For KOH processing the holes need to be larger in size as the etching occurs along the 

(1, 1, 1) plane of the single crystal silicon. This (1, 1, 1) plane makes an angle of 54.74° 

to the plane of the wafer. Depending on the thickness of the wafer the size of the 

backside cavity can be calculated. One problem with the KOH etching method arises 

due to the uncertainly or inaccuracy in the wafer thickness. This results in a smaller or 

larger cavity under the tunable grating membrane. The size of the cavity determines the 

size of the bottom electrodes which provide the electrostatic forces and also determines 

the squeezed film damping. ICP etch is enables etching the wafers with almost 90° etch 

angle which reduces the dependence of the cavity size on the thickness of the wafer. 

Hence, ICP method is preferred when it is feasible. In comparison with the KOH etch, 

ICP etch is faster, convenient and the other hand it also involves high temperature 

processing. 

3.2.2.1 Alignment marks 

The alignment marks have 3 levels of alignment. Figure 30 shows the detailed view of 

the alignment marks. The size of the alignment marks is about 1.3 mm x 1.3 mm with 5 
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big squares for coarse alignment. The central square has another set of 4 squares each 

for both masks. The outer edges of the squares can be used for finer alignment, and the 

inner edges of the squares are very finely placed to give a smallest feature of 4 µm.  

1312 µm

4 µm

 

Figure 30 – Alignment mark from both masks (mask 1 - green and mask 2 - blue) 

3.2.3 Process development 

The developed process sequence for the SOI based tunable membranes is shown in 

Figure 35. The fabrication is a simple two mask process on SOI wafers. The top mask 

patterns the device layer which consists of the movable membrane with grating; etch 

holes and openings for the substrate electrode. The second mask is used to pattern the 
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oxide for backside cavity. This oxide is the mask for backside Induction Coupled Plasma 

(ICP) etching. The wafers are then diced in to chips.  

The process is explained in the following section. Figure 31 shows the schematic of the 

cross section of the tunable grating. 

Si device
layer
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Si Substrate

Backside cavityBackside cavity

Grating

Membrane

Etch holes

Grating
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Figure 31 – Schematic cross section of the tunable grating membrane 

Silicon on insulator wafers with 500 µm substrate, 1 µm oxide layer and 2.5 µm silicon 

device layer is used. The thickness of the device layer varies from 2.4 µm to 2.8 µm. The 

process steps are described as follows 

3.2.3.1 Front side processing with Mask 1 

1. HMDS is spun for 4000/1000/60 and dried in air for a minute 

2. Photo-resist 1813 is spun for 4000/1000/60 

3. Soft bake 120°C for 1 min on hotplate 

4. Expose for 7s channel 2 (20mW for 7s is 140mJ) 
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5. Develop in MF319 till the oxide surface looks uniform (takes variable time ~ 15 

minutes shake the container once in a while). 

6. DI water rinse until the oxide surface becomes hydrophobic ~ 2-3min 

7. Etch in STS ICP – module 3 (for SOI wafers – recipe ok_mod3) 3.5min ~ 13 

cycles. Actual etch rate is 0.4µm/cycle which corresponds to 5.2 µm however for a small 

run the etch rate is slower. STS ICP allows etching of vertical cavities with high aspect 

ratios. Trial Silicon wafers are etched to test the capability. The wafer is over-etched (~5 

µm) and is broken at the grating. An SEM image of the cross section is shown in Figure 

32. It can be seen that 1 µm wide finger structures can be successfully fabricated using 

the tool. 
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Figure 32 – STS ICP etch etching vertical trenches to make 1 µm wide fingers 

8. PR and HMDS removal using acetone in ultrasonic bath for 20 min. 

9. Observe the steps under profilometer – reads 2.4 to 2.8 µm 
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Figure 33 – a tunable grating after front side etching in STS ICP 

3.2.3.2 Backside processing – Mask 2 

1. Deposit 3 µm of oxide on backside in STS PECVD (recipe name: std_ox) 

2. SPR220 spin 2000/250/40 

3. Soft bake 110-115° C for 6:30min 

4. Backside alignment using MA6 and Ch2 15s exposure i.e. 300mJ 

5. Develop in MF319 until features look clean about 1-2min 

6. Remove SPR220 from the borders so that it can be clamped in Plasma Therm 

ICP without sticking to the clamp 

7. Hard bake at 120° C for 25min in convection oven 

8. Etch in Plasma Therm ICP for 21min (do in 2 steps 15+6 to make sure that the 

etch rate matches) 
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9. Do not remove the SPR220, the wafer is ready for dicing 

3.2.3.3 Dicing of wafer 

1. Keep the devices facing up on the dicing tape. (It can be very sticky and 

sometimes can pull off deposited layers. SPR220 facing the dicing tape protects 

deposited layers). 

2. Dice wafers into chips along the chip borders 

3.2.3.4 Backside processing continued 

1. A handling wafer is used to process the chips. A silicon wafer is coated with thick 

(>5 µm) PECVD silicon oxide layer. Chips mounted on this handling wafer using Cool 

Grease. The Cool Grease is applied using cotton swab only near the edges of the chips. 

It is important to make sure that the Cool Grease seals all the edges so that the gases in 

the ICP chamber do not enter to etch the front side. 

2. STS ICP etch module1 400 cycles (0.9 µm/cycle) 360 µm etch (recipe name: 

ok_mod1E) 

3. STS ICP etch module-3 (ok_mod3) for approximately 350 cycles (0.4 µm/cycle) 

140 µm etch (total ~500 µm) Do in steps and measure the depth under Wyko 

profilometer. Do until the oxide window looks clean visually. Some deformation or 

cracking is visible due to the thermal stress mismatch between the sacrificial oxide and 

device silicon layer. (Figure 34) 
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Figure 34 – Tunable grating observed from the backside after backside etching 

4. Remove the chips from the mount wafer using tweezers and razor. Support one 

edge of a chip and flip it over slowly by sliding a razor under it. Make sure the features 

underneath do not touch any surface in the process. 

5. Cool Grease needs is removed using a cotton swab and acetone. After backside 

etching the membranes are very easy to damage. Also, it is difficult to clean the Cool 

Grease from surfaces with features.  

3.2.3.5 Releasing the membranes 

1. To release the membranes 49% HF is used. The chips are dipped in 49% HF for 

~ 12min. 

2. The chips are dipped in DI water container and slowly water in the container is 

changed 

3. Chips are dipped in acetone for 1 hour (change acetone 2 times at 5 min and 

10min). 

4. Chips dried in Super Critical Dryer. 
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5. The chips are observed under Profilometer (Wyko) to check if the membranes 

are properly released. The membranes show a small (~50nm) upward buckling 

deflection which shows the released portion of the membrane. 
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Figure 35: Fabrication process sequence for the tunable grating interferometer 

A thin layer of Gold (~100nm) may be evaporated or sputtered on top surface to improve 

electrical bonding and reflectivity; however it is optional and is not done for the µSGIs 

studied in this paper. The number of process steps and masks are significantly less as 

compared to earlier designs [66]. 
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3.2.4 Fabrication results 

 

Figure 36 – A fabricated tunable grating chip 

Figure 36 shows a fabricated tunable grating chip with 2X4 array of tunable gratings. 

The edges of the fabricated chips are damaged by backside ICP etching through the 

holes designed for ease alignment and dicing over it. The fabricated chips are observed 

under microscope and the pictures of type 1 and type 2 membranes under microscope 

are shown in Figure 37 and Figure 38. The membrane layout, the substrate and the 

backside cavity can be clearly seen in the pictures. 
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Figure 37 – A fabricated type 1 membrane 
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Figure 38 – A fabricated type 2 membrane layout 

The chips are mounted face-up on printed circuit boards and the electrodes are wire-

bonded. The conductive silicon is easy to wirebond without any metal electrode layer. 

Figure 39 shows such a picture of such an array. 

The fabricated chips are examined under an optical profilometer and it is observed that 

the membranes are under a residual compressive stress, making them buckle upwards 

by approximately 50 nm (Figure 40). This upward displacement is at the center of the 

membrane which is 500 µm in length.  

The devices have a very flat grating in buckled state and under actuation. Figure 41 

shows a 3D profilometer picture of an actuated tunable grating. It can be seen that the 

tunable grating remains flat when the membrane bends due to the electrostatic 

actuation. 
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Figure 39 – Fabricated 4x2 array of tunable gratings on a chip. The devices and the 

substrate are wirebonded. 

Fabricated tunable grating

AA

Surface profile along line AAFabricated tunable grating

AA

Surface profile along line AA  

Figure 40 – Profile of the fabricated tunable grating. The tunable grating shows about 

50nm upward buckling deflection 
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Figure 41 – 3D image of the tunable grating structure under DC bias actuation, obtained 

using an Optical Profilometer. Note that the grating remains flat 

To test the flatness of the grating under the worst condition the membrane was actuated 

with 41V bias voltage (1V more than the maximum voltage in the operation). An optical 

profilometer image of this tunable grating is shown in Figure 42. It can be seen that the 

grating shows ~50 nm maximum deflection in the X profile whereas the Y profile shows 

less than 20 nm maximum deflection. For a laser beam of 50 nm diameter focused at the 

center of the grating, the flatness error of the grating is less than 10 nm at 41V bias. 
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Tunable grating profile

 

Figure 42 – Grating flatness test under profilometer, the grating is actuated with 41V 

electrostatic bias voltage 

The fabrication process showed a yield of ~90% after parameter optimization. These 

devices were then assembled in a table-top optical setup to characterize their static and 

dynamic behavior using laser interferometry. 

3.3 Characterization and comparison with FE model 

As mentioned earlier, the tunable gratings enable miniaturized laser interferometry. 

Laser interferometry is used to characterize the tunable gratings. 
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3.3.1 Method and setup for characterization 
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Figure 43: Experimental setup for the characterization of µSGI 

For the static and dynamic characterization of the tunable gratings a pre-calibrated PZT 

is used as shown in Figure 43. (This characterization method uses a novel control 

algorithm developed for high bandwidth surface tracking and noise reduction, run on a 

Field-programmable gate array (FPGA) which discussed in detail in CHAPTER 4.) As 

shown in Figure 43, the reflector, mounted on a pre-calibrated PZT, is placed in front of 

the tunable grating. Focused laser beam is passed through the grating of the µSGI. One 

or both of the first orders of interference are captured by Photo-detectors (PD). The PD 

output is filtered using a low pass filter before it is fed to the FPGA, to avoid interference 

of the high frequency signal with the low frequency noise. The FPGA generates a real 

time analog output which tunes the PZT to the maximum sensitivity position on the 

optical curve. This way the PZT follows the motions of the grating at low frequencies (~1 

kHz).  
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3.3.2 Static characterization 

For static calibration, the grating bias voltage is varied sinusoidally in the operating 

voltage range (10V to 40V) at a low frequency (~20Hz). The PZT with active control, 

which maintains the distance between the grating and the sample to the highest 

sensitivity position in a fringe, in turn follows the displacement of the grating. The PZT 

behaves linearly in the given range of motion at this frequency; hence the bias voltage 

applied to the PZT can be converted in to displacements if the sensitivity of the PZT is 

known. 

Finite element (FE) method is used with the help of ANSYS multiphysics to simulate the 

behavior of the grating under electrostatic loading as discussed in Section 3.1.4. The 

displacements obtained experimentally and from the FE simulation are plotted against 

the bias voltage of the grating as shown in Figure 44, which shows a good agreement. 

The membranes have a small upward buckling which snaps downwards around below 

10V hence this voltage range is not used. The results are shown in operating voltage 

range; the initial displacement at 10V is matched for the two curves. 
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Figure 44: Deflection of grating vs. actuation voltages 
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Figure 45 – Static characterization of multiple devices (tunable gratings) on a chip. 

Nomenclature indicates the location of the tunable grating e.g. L3 = 3 rd tunable grating 

from top in the left column of tunable gratings 

Figure 45 shows the response of multiple gratings on a chip. It can be seen that the 

gratings have different displacement responses for voltage range between 10V to 38V. 

Device L3 shows a hysteresis curve with snapping of gratings at ~17V. For such 

gratings the useful range of voltages is from the snapping voltage to the maximum 

voltage applied. Different snapping voltages imply that the gratings are under different 

residual stresses which may be a result of fabrication non-uniformities. These calibration 

curves show some high frequency noise which results from the ambient vibrations. The 

calibration curve is filtered to obtain a smooth curve. 
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3.3.3 Dynamic characterization 
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Figure 46 – Measured and FE modeled frequency response of the µSGI tunable grating 

For the dynamic characterization of the tunable grating membranes the same setup is 

used. The grating is excited with a small magnitude (~0.1V peak to peak) sinusoidal 

signal. This signal is swept through the frequency range of interest and the amplitude PD 

output for each frequency is stored. Using the sensitivity of measurement, this output 

can be converted to displacement in nm.  

The experimental and FE frequency response of a grating is shown in Figure 19. It can 

be seen that the first resonance occurs at around 50 kHz, which is high enough for 

active noise reduction in the required bandwidth of 1 kHz. The second order 

approximation of the frequency response has a small damping ratio of ~0.05. The FE 

result shows good agreement with the measured data in terms of capturing the 

resonance for the first 4 modes. The slight mismatch in the resonance frequencies can 

be due to different squeeze film damping effects for different mode shapes. The third 

harmonic shows a higher response magnitude in the measured data. The third mode of 

resonance is as shown in Figure 19 and the reflected beam from the grating fingers is at 
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an angle and do not interfere throughout the cycle of motion. This generates periodic 

oscillations in the amplitude of the PD output which are not related to interference. The 

fourth mode of resonance is not prominent in the measured data because of the high 

deformation of the grating surface in this mode. 

Multiple devices are tested for their frequency responses using a dynamic spectrum 

analyzer. The responses are shown in Figure 47. 25V DC bias was applied to the 

tunable gratings and 200mV or 400mV amplitude AC signal was used to sweep the 

frequencies across the spectrum. 
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Figure 47 – Frequency response of multiple tunable gratings on a chip 

Figure 47 shows the frequency responses of many devices on a chip. It can be seen that 

the gratings follow the same trend in terms of the resonance frequencies of the first 

mode. The gratings show different sensitivities to the voltage inputs which are due to the 
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different grating area factors (i.e. the ratio of finger width to the pitch of the gratings) and 

non-uniformities in the fabrication.  

Note: The Y axes in Figure 46 and Figure 47 shows the amplitude of the vibrations in 

nm, which is obtained by multiplying the photo-detector signal by the corresponding 

gain. However, this is true only when the grating moves perpendicular to its plane (i.e. 

first resonance mode shape – bandwidth ~50 kHz). For higher frequencies the grating 

may not remain flat and perpendicular to the optical axis. Hence, the amplitude does not 

have any physical significance in the frequencies higher than the first resonance 

frequency. However, the resonant frequencies can be accurately captured by the optical 

method. 
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CHAPTER 4 

OPTICAL SETUP FOR MICRO-SGI 

The tunable gratings of the µSGI are miniaturized using MEMS technology and are 

batch fabricated to enable the array operation. The array implementation of the µSGI 

also requires the miniaturization of the optical assembly. This chapter explains in detail 

the design, simulation and implementation of the optical assembly.  

4.1 Table-top optical setup 

4.1.1 Single µSGI table-top optical setup 
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Figure 48 – Schematic of table-top optical setup for single µSGI operation 

The initial tests of the µSGI were conducted on optical table. A Helium-Neon (He-Ne) 

laser with wavelength (λ) of 632.8nm and 2mW power was used as a source. For a 

single µSGI operation a setup as shown in Figure 48 was built on optical table. In Figure 

48 the laser beam from the He-Ne laser source is expanded and collimated using a lens 

assembly. It is passed through a pupil or pinhole to reduce its size. The beam is then 
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focused on to the sample through the grating. The grating and the sample are placed 

close to each other (~1mm) to avoid significant size changes in the beam. The diffraction 

orders are focused on to photo-detectors using lenses. 

4.1.2 Single µSGI table-top optical setup 
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Figure 49 – Schematic of table-top optical setup for single µSGI operation 

A 2x1 array of µSGIs can be illuminated using a setup as shown in Figure 49. The laser 

beam is split in to two beams and the beams are directed parallel to the original beam as 

shown. These beams are focused on to the sample at different spots. The location of the 

spots can be adjusted by changing the angle (tip or tilt) of the mirror. The beams are 

adjusted so that they illuminate two tunable gratings on a chip. The two tunable gratings 

generate two sets of diffraction orders. The respective first orders of diffraction are 

captured by two different photo-detectors. For easy detection of beams, the tunable 

gratings are chosen such that their grating periods are not identical to each other and 

the first orders are directed at different angles. 

These optical setups were successfully implemented and some of the results obtained 

from these setups are demonstrated in CHAPTER 5. However from the perspective of 
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ease of operation and feasibility of array operation, these setups are not good. The table 

top setup is bulky (tens of centimeters in length). The array operation is achieved by 

beam-splitter mirror assembly which is not convenient for multitude of beams.  

Another problem with the table top optical setup arises from the use of lenses to focus 

the beam on the sample through the grating. The distance between the grating and the 

sample introduces a mismatch between the curvatures of the interfering wavefronts as 

shown in Figure 50. This leads to circular fringes inside each order. This problem can 

also be solved by illuminating the grating with a collimated beam. This configuration is 

easy to implement using a fiber collimator assembly. 

Lens

Grating Sample

Mismatch in
Wave-front curvatures

 

Figure 50 – Mismatching wavefronts interfere to generate circular fringes inside a fringe 

4.2 Design of miniaturized optical assembly 

To overcome these problems a miniaturize setup is developed. The schematic of the 

miniaturized optics setup is shown in Figure 51. The laser is carried to the system using 

optical fibers. Each fiber has an inbuilt collimator at the end which illuminates a pupil (or 
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pinhole). The beam gets cropped by the pupil to the desired beam diameter. The 

cropped beam passes through the tunable grating as shown. An optional microlens can 

also be assembled to generate a smaller spot on the sample which gives better lateral 

resolution.  

If a microlens is used then the distance from the lens to the sample is determined by the 

focal length of the microlens. However, if the lens is not used then the distance is limited 

by the efficiency of the optics. As the sample moves farther the beam diverges and 

smaller parts of the reflected beam comes back to the lens and grating. Hence, the 

sensitivity of the reading reduces with the distance between sample and the grating. 

 

gratingOptical fiber

collimator
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First orders

~1mm 1-20mm

sample
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Figure 51 – Schematic of the micro optical system 

4.3 Diffraction optics modeling and simulations 

A diffraction optics based model is created in MATLAB to simulate the optical setup. The 

code computes the phase front by two methods – 1) Convolution method for short 

distances and 2) Fourier method for far field. This code has been modified from [68]. The 
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model can simulate both macro and micro setups. This code is used to design the micro 

optical system. The design parameters used are as follows dpupil-grating=8mm; dpupil-

grating=8mm; pupil diameter=0.1mm. 

The code is given in Appendix 7.2. The optical intensity profile at different planes is 

obtained during the simulation. The profiles for the chosen set of parameters are shown 

in Figure 52. A Gaussian beam (beam waist 280µm) is generated after collimation as 

shown in graph 1. The beam is then cropped by the pupil (graph 2). This beam travels to 

reach the grating to form Fraunhofer rings, a cross section intensity profile of which is 

shown in the graph 3. The beam then gets split into two due to the grating fingers. One 

part passes through the grating (graph 4) and the other is reflected back from the grating 

(graph 4B). The beam passing though the grating travels to reach the microlens where 

its profile becomes as shown in graph 5. 
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Figure 52 – Optical intensity profiles of the beam traveling from the collimator to the 

microlens (obtained from simulation) 
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Figure 53 – Optical intensity profiles of the beam traveling from the microlens to the 

photo-detectors (obtained from simulation) 

The microlens can be used if high lateral resolution is desired. Figure 53 shows the 

optical intensity profiles of the beam when a microlens is used. In Figure 53, the graph 6 

shows the profile of the beam at the sample and the diffraction orders focused on the 

sample surface. The beam reflects back to the lens and the grating (graph 7 and graph 

8). Only the zeroth order passes through the grating (graph 9). This beam interferes with 

the beam reflected from the grating fingers (Figure 52 graph 4B). The addition of the 

beam at the grating surface is shown in graph 10. The interfering beams travel to the 
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photo-detector plane where an order separation of 1mm is obtained. The intensity of the 

first diffraction order is measured at this plane. 

When the microlens is not used, the beam profiles change mainly at the sample surface 

as shown in Figure 54 graph 6. The beam traveling back to the lens or grating plane 

(Figure 54 graph 7) assumes a shape similar to the earlier case where lens is used 

(Figure 53 graph 7). 
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Figure 54 - Optical intensity profiles of the beam traveling from the grating to the photo-

detectors when no lens is used (obtained from simulation) 

The intensity of the first order is obtained by integrating the optical power over the first 

order. The optical curve can be obtained by changing the distance of the sample and 

can be plotted as shown in Figure 55. It can be seen that the valley of the optical curve 

does not reach zero intensity. This is because of the different intensities of the interfering 

beams. The intensity of the beam reflected from the grating (4B) depends on the 

reflectivity of the grating surface and the area factor of the grating. On the other hand, 

the intensity of the beam coming from sample (9) depends on the area factor of the 

grating, losses in the lens and the reflectivity of the sample. The lens-loss is neglected in 

these simulations and the reflectivities are assumed to be 1 for the case shown. The 

losses and lower reflectivity will result in reduced amplitude of the optical curve. One 



www.manaraa.com

71 

sample optical curve obtained from the table-top optical setup is shown in Figure 56. For 

this curve, the sample is placed on a PZT and is actuated at 100Hz ~300nm amplitude. 
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Figure 55 – Optical curve obtained from the simulations  

As discussed earlier the table-top setup generates circular fringes inside each of the 

orders. This is verified by the simulations. One such first order is shown in Figure 57. 

The circular fringes behave as if they are diffraction orders. Hence, when the sample 

moves by half a wavelength distance, the bright circular fringe becomes dark and the 

dark fringe becomes bright. Hence, the overall intensity of the first diffraction order 

changes negligibly. This is avoided by the miniaturized setup where the collimated beam 

is passed through the grating. A zoomed in first order profile obtained from the 

miniaturized setup is shown in Figure 58; no fringes can be seen inside the order. 
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Figure 56 – Sample optical curve obtained from experiments 

-0.025 -0.02 -0.015 -0.01 -0.005
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Distance from axis (m)

N
or
m
al
iz
ed

 in
te
ns

ity

First order shape for the table-top setup

 

Figure 57 – Circular fringes generated by the table-top setup 
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Figure 58 – No significant circular fringes are generated by the miniaturized assembly 

setup 

4.4 Miniaturized optical setup 

4.4.1 Design of optical assembly and fabrication using stereo-lithography 

The miniaturized assembly contains the tunable grating chip, the fibers and collimators, 

the photo-detectors and electrical connections. All these are perfectly aligned to each 

other and fit in a small space. The alignment is critical for good optical performance of 

the µSGIs. As these parts are made independent of each other, some supporting 

structures are required for assembly. These supports or holder structures are designed 

such that the assembly process is simplified.  

Stereolithography technique was chosen to fabricate the holder structures. Stereo-

lithography enables fabrication of complicated three dimensional holders. The holders 

are designed using AUTOCAD 3D. A schematic of the assembly structure in its final 

form is shown in Figure 59.  
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Figure 59 – Schematic of the miniaturized assembly 

The assembly consists of a chip holder which supports the chip and provides an array of 

through holes to pass electrical connectors through. The chip holder also has two 

cavities inside so that laser can be passed though it and the first orders can be 

accessed from the backside without any hindrance from the holder. A wirebond 

protection cover is used to cover the wirebonds of the tunable grating chip. This surface 

of the µSGI gets exposed to the sample and can get damaged during sample handling. 

The wirebond protection cover can also be used for mounting the microlenses optionally. 

Fiber and collimator are supported by a fiber bolder. The holder has a cavity which 

tapers towards its closed (upper) end. This allows an easy friction fit assembly of the 

collimator structure. The photo-detectors are placed in a small holder and are glued to 

electrical conductors by conductive epoxy. This assembly is also friction-fit in to the fiber 
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holder and it is also aligned to receive the first order beam. The three dimensional vies 

of these structures are shown in Figure 60. 

Grating chip holder and extension

Wirebond protection extension

Fiber holder extension

2cm

 

Figure 60 – 3D view of the holder structures and their extensions 

These structures are designed to have extension structures for the ease of assembly. 

The dimension of any holder by itself is smaller that 2cm X 2cm X 1cm and it is difficult 

to handle these structures. The extensions allow easy handling. The extensions have 

small holes at the other ends and are used to mount the holders on three dimensional 

(XYZ) linear and rotational stages. The XYZ stages have high resolution and allow an 

easy way to align the micro-optical parts. The fabricated holders are shown in Figure 61. 
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Figure 61 – Fabricated holders for miniaturized assembly 

4.4.2 Miniaturized assembly process sequence 

The assembly process begins with the fabrication of the holders using stereolithography. 

The chip holder is assembled first. (Figure 62) Gold coated rectangular cross section 

wires are passed though the array of holes on two sides of the chip holder. These wires 

are bent flat towards the chip on the front side. The wires are glued to the chip holder 

firmly using UV cured epoxy making sure that the top surfaces of the wires are not 

contacted by the epoxy. A fabricated chip is placed in the chip holder in the cavity made 

for the chip. The chip is then glued to the chip holder using ultra-violet (UV) cured epoxy. 

The chip holder assembly is then placed under the wirebonder to make wirebonds 

between the tunable grating electrodes and the gold coated wires as shown in Figure 

62. Small dabs of epoxy are placed at the bonds to provide an addition support to the 

bonds. The chip holder is then mounted on a XYZ stage.  
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Figure 62 – Miniaturized assembly process sequence 1 

The wirebond protection cover is mounted on another XYZ stage. The two are aligned 

and brought together and glued using superglue. The wirebonder protection extension is 

then cut off to leave the chip holder and wirebond protection cover assembly held on the 

chip holder extension. 
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Figure 63 - Miniaturized assembly process sequence 2 

In the next step the fiber holder assembly is built by friction-fitting the optical fiber and 

collimator. The parts are also glued using UV cured epoxy. This assembly is then 

mounted on the second XYZ stage. The laser is switched on and the fiber holder 

assembly is aligned with chip holder assembly. (Figure 63 and Figure 64) The diffraction 

orders coming out of the grating serves as a good feedback for the alignment process. 

When the alignment is nearly done, a flat sample is placed in front of the grating. Either 

the sample or the tunable grating is actuated and the photo-detector (PD) signal is 

observed. The alignment is fine tuned to maximize the optical output on the PDs. After 

the alignment is finalized the assemblies are glued using superglue. The process is 

repeated for more fiber assemblies.  
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Figure 64 – Miniaturized assembly using XYZ stages and sample placed on actuator 

At the end all the extensions are cut off. The assembly is placed in a shielded box with 

holes in the front and back for laser beam and fibers to pass through. One such 

assembly is shown in Figure 65 and Figure 66. SMA connectors are used to provide 

electrical connections to the photo-detectors and tunable gratings. 
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Figure 65 – Miniaturized assembly placed inside a shielded box 

 

Figure 66 – Miniaturized µSGI package mounted on a XYZ stage for alignment 

4.5 Spot size measurement 

The spot size of the laser on the sample determines the lateral resolution of the 

measurement. A quartz based sample with 40µm metal line (Figure 67 is placed on a 

PZT actuated stage and the stage is mounted on XY automatic linear stages. To detect 
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the spot size conventionally a sample with well defined edge is scanned. The distance 

travelled to saturate the edge effect gives the spot size. 

Scan line
40 µm

Gold

Quartz
 

Figure 67 – Spot size measurement sample 

In the case of µSGI, the PD output not only depends on the sample reflectivity but also is 

a function of the distance between the grating and the sample. The ambient vibrations 

tend to change this distance a lot which can affect the edge measurement. Instead, the 

reflectivity of the sample itself is used as a measure for the spot size. 

The sample is placed on a PZT (Z direction) and automatic linear stages (XY direction). 

Hence it can be simultaneously actuated in the Z direction and moved at a steady 

velocity in the X or Y direction. If the amplitude of the Z vibration is greater than a half-

wavelength, irrespective of the distance between the grating and the PD output scans 

the whole optical curve. The envelope of the PD readings give us a measure for the 

reflectivity of the surface and hence the spot size. 



www.manaraa.com

82 

 

Figure 68 – Spot size measurement with lens integration – raw data 
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Figure 69 – Spot size measurement amplitude envelope 

The FIRAT sample was moved at a constant velocity of 50µm/s to scan an electrode line 

(~40µm wide). The sample was actuated by the PZT stage at 100Hz ~600nm peak to 

peak amplitude. The optical intensity measured by the photo-detectors is acquired and 

visualized by using oscilloscope. The optical response obtained is shown in Figure 68. 

The amplitude envelope of the date is shown in Figure 69 which shows that the intensity 
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changes from 10% to 90% in 6.6 µm. Hence, the spot size or the lateral resolution of the 

µSGI is 6.6 µm. 

4.6 Vertical resolution of the µSGI  

The vertical displacement is measured in the form of photo-detector signal and it needs 

to be converted to displacements to understand the vertical resolution of the µSGI. The 

optical curve (Figure 56) can be used to calculate the sensitivity of the readings. The 

peak to peak amplitude ( ppV ) of the optical curve, which is proportional to the reflectivity, 

can be used to determine the sensitivities of the measurement at the given point. The 

sensitivity at the highest sensitive point on the optical curve is given by 

ppV
ySensitivit

π
λ

2
=  (4.1) 

E.g. the optical curve shown in Figure 56 shows a sensitivity of 53nm/V. 

 

Figure 70 – Vertical displacement resolution from noise measurements 

The measurement noise can be converted to displacements using the sensitivity value 

which gives us the displacement measurement noise. This experiment is performed at 

100 MS/s and 0.2M sample points are collected over 2ms. The time series of data is 
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shown in Figure 70. This data gives a root mean square (RMS) value of 0.78mV which 

corresponds to 0.052 nm RMS vertical resolution. The bandwidth of the photo-detector 

used is 875 kHz. Hence, the root mean square noise of the µSGI over 875 kHz 

bandwidth is 5.93x10-5 nmrms/√Hz.  
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CHAPTER 5 

LOW NOISE CONTROLLER FOR INTERFEROMETERS 

As mentioned earlier, initial positioning, vibration and acoustic noise can cause a 

significant change in the sensitivity of the measurements as well as introduce errors in 

the readings. The tunable grating of µSGI is designed to reduce this effect by 

implementing an active control. The mechanical vibration noise mostly occurs below 1 

kHz. To operate an array of scanning grating interferometers, each interferometer 

requires a different actuator for noise cancellation. This is due to the topographic 

variation of the samples under observation and the different magnitudes of vibrations 

that might be present at different points over it. The independent actuation capability 

enables an array of µSGIs to be used simultaneously with high sensitivity and reduced 

noise. 
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Figure 71 - Schematic of the optical intensity curve 

As discussed in the introduction of the interferometry in the section 2.3 the optical curve 

for the interferometers is a non-linear curve as shown in Figure 71. It is a squared 
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sinusoidal curve with λ/2 periodicity. The optical curve has high sensitivity at the 

inflection point, which is the desired point of operation for very high resolution 

measurements. The active path stabilization method is implemented to actively move the 

grating to the desired point of operation. This chapter details the active path stabilization, 

the conventional methods to implement it and the novel recurrent calibration method and 

its implementation on µSGIs. 

5.1 Design of active path stabilization 

The schematic of the active control of the tunable grating interferometer is shown in 

Figure 72. The signal being measured is high frequency low amplitude vibration and the 

low frequency vibration noise comes from the ambient or acoustic vibrations and 

positioning errors. The total displacement signal is then converted to electric signal by 

photo-detector sensors (F(s)). This electric signal can be acquired by data acquisition 

systems or it can be observed real-time on scopes. This signal is used as a feedback for 

the closed loop control. The controller (C(s)) uses a low pass filter to separate the low 

frequency vibration noise from the signal. This noise is then processed as an error signal 

and a signal is generated to reduce the noise. The signal is fed to the tunable grating 

actuator (A(s)). The tunable grating is actuated by electrostatic voltage in one direction 

and is pulled back by the spring force in the other direction. The tunable grating moves 

in order to cancel the vibration noise and maintain the operation at the desired point of 

operation. 
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Figure 72 – µSGI active noise control system – block diagram 

Figure 73 shows an optical curve over one λ (632 nm for He-Ne laser). It can be seen 

that the desired points of operation occur at every λ/4 distance. However, it is important 

to note that the slope of the optical curve at every consecutive desired point of operation 

has opposite signs; hence the stable controller gain (I for an integral controller) also 

needs to have different polarities accordingly. The phase of the measured signal also 

changes by 180° if the slope of the curve changes. 

Different methods of active path stabilization exist as discussed in the next section. If the 

method requires characterization of the optical curve then the grating must at least be 

able to move by λ/2 (316 nm). This displacement is denoted by the required range of 

motion and it is sufficient to characterize the optical curve for a laser with λ=632 nm or 

less. 
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Figure 73 – Normalized optical intensity curve for the first diffraction order 

5.1.1 Methods for path stabilization  

Several methods have been implemented to reduce the sensitivity errors and vibration 

noise in different interferometric metrology systems. These include detecting the 

harmonic distortions by modulating the length of optical fiber or modulating the Fabry-

Perot cavity [58], modulating the reference position [59]. Other phase-locking methods 

like optical intensity feedback [60] and optical feedback [61] actively tune the frequency 

of the laser to achieve highest sensitivity and vibration reduction. Fringe motion has also 

been used for phase-locking [62]. Fourier analysis techniques to separate low frequency 

error has also been demonstrated [63].  

The harmonic distortion based method is advantageous in interferometric metrology 

systems, where the phase of the reference beam in the interference system can be 

easily modulated by modulating the reference mirror. It does not need initial 

characterization of the optical properties of sample. Graebner et al. demonstrated that a 

scanning laser interferometer with active noise control can reduce the effect of low 
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frequency vibrations successfully using harmonic distortion based method [53]. A 

resolution of 3x10-4 nm/√Hz and a bandwidth of 6 GHz was demonstrated using this 

technique [12]. Harmonic distortion based method is also implemented on grating 

interferometers (µSGIs) [66]. For high accuracy and flexible parallel operation, the 

harmonic distortion detection can be implemented with a discrete Fourier transform 

(DFT) based method in digital domain using field-programmable gate array (FPGA) [69]. 

Conventional control methods are also limited by low bandwidth actuators. The 

electrostatic actuation of tunable gratings has shown a higher (50 kHz) bandwidth of 

operation, which gives more flexibility for designing efficient control algorithm, which can 

also be used to control an array of interferometers simultaneously. 

5.1.2 Harmonic distortion based path stabilization 

The harmonic distortion based method is commonly used for active path stabilization of 

interferometers. The main advantage of this method is that it does not require pre-

calibration of the optical curve. The method also determines the non-linearity of a curve 

over a small region. In active path stabilization, the desired point of operation falls in to a 

linear region. Hence, using the harmonic distortion based method this point can be 

tracked. Figure 74 shows the schematic of the harmonic distortion based method 

implemented on quartz based µSGI. It used a phase sensitive detector (lock-in amplifier) 

to obtain the second harmonic component of the signal. The amplitude of the second 

harmonic signal is proportional to the second derivative of the optical curve at the point 

of operation. The following paragraphs explain the harmonic distortion based method in 

detail and explains its shortcomings from the µSGI point of view. 
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Figure 74 – Schematic of the harmonic distortion based active path stabilization 

implemented by Kim and Schmittdiel [70] 

5.1.2.1 Harmonic distortion based method - concept 

In harmonic distortion based error detection method typically the phase of reference 

signal is oscillated sinusoidally by small amplitude dψ  using an actuator, typically piezo-

electric transducer (PZT). The frequency of oscillations Ω  is approximately an order of 

magnitude higher than the noise bandwidth of interest. If the phase difference between 

the two interfering beams is ψ , the overall irradiance of the coherent addition of beams 

RI  and SI  is represented by  

φcos2 SRSR IIIII ++=  (5.1) 

 Where, )sin( td Ω+= ψψφ  is the phase between the wave fronts of the two beams. dψ  

is typically smaller than the desired range of ψ . Hence,  

ψcos2 SRSR IIIII ++≅  (5.2) 

It can be seen that this function is most sensitive and linear when 2ππψ += n , these 

are the desired points of operation. 
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The amplitude of second harmonic can be given by  

)2cos(cos)(4 2

2 εψψ +Ω=Ω tIIJI SRd   (5.3) 

Where, ε  is the phase delay introduced by opto-electronic circuitry and mechanical 

behavior of the actuator. It can be noted that at the desired point of operation i.e. 

2ππψ += n , the amplitude of second harmonic, Ω2I  becomes zero and it changes 

polarity on either sides of the desired point of operation. Hence, Ω2I  can be used to 

measure the error in ψ , and can be used as error feedback in the control loop.  

The main advantage of the harmonic distortion algorithm is that it does not need 

beforehand optical calibration of the sample for its operation. However, several 

drawbacks of this method were observed, which are explained in the following 

paragraphs.  

In the harmonic distortion method the reference beam needs to be continuously 

modulated. This modulation amplitude dψ  needs to be much smaller than π/2 so that its 

contribution towards noise is negligible. However, the maximum amplitude of this second 

harmonic signal SRd IIJ )(4 2 ψ , being proportional to dψ , becomes much smaller than 

SI  or RI . This is undesirable because it reduces the signal to noise ratio (SNR) for 

noise reduction.  

The amplitude of the second harmonic is obtained experimentally by phase locking 

circuitry. However, phase locking gives real and imaginary components of the desired 

harmonic separately. Some post-processing of the error data is required to obtain the 

amplitude of the second harmonic. However, if the phase of the phase locking circuitry 

can be tuned such that it locks to )2cos( ε+Ωt , it eliminates one component of the 
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harmonic. Phase delay ε  can be obtained by comparing the first and second harmonics 

as they are °90  phase shifted.  This method has been shown to work [53, 59, 66].  

The actuators in all these experiments are piezo-electric actuators which were used to 

modulate and tune either the sample or reference mirror. This vibration is used to 

generate the required phase modulation for harmonic distortion method to work. 

However, actuation of sample or the reference mirror may introduce extra noise in the 

system. From array operation point of view, each of the reference mirrors (or gratings in 

the case of grating interferometers) needs to be actuated independently. The µSGIs are 

equipped with tunable gratings for this purpose. The tunable gratings can also be used 

for modulating the phase of the reference beam [66]. If the tunable gratings are used for 

phase modulation, there are two problems with this method – 1. Due to non-linearity of 

the electrostatic actuation, dψ  varies with changing the bias on the grating membrane. 

2. Electrostatic softening of the membrane at higher bias voltages may change the 

dynamic response of the membrane, which in turn alters the phase delay ε . These 

problems of non-linearity and changing delay can be solved by calibrating the grating 

membrane and correcting the actuation signal to compensate non-linearities. However, it 

is not desired because of it further adds to the complexity of the phase locking method. 

Apart from the phase difference ψ , the dynamics of the sample or reference mirror also 

contribute to the second harmonic signal. Though the ambient vibration noise has a 

small bandwidth in general, high amplitude low frequency vibrations or drifts give rise to 

significant higher frequency components. This is caused due to aliasing i.e. if the 

waveform length used for the phase locking is not long enough to capture a complete 

wavelength. However, the waveform length also corresponds to the delay in calculating 

the error signal, which needs to be minimized. This problem can be solved by windowing 

the sample, however it further adds to the complexity of the system. 
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5.1.2.2 Digital implementation of the harmonic distortion based method 

For better accuracy and flexibility of implementation, this method was implemented 

digitally using field programmable gate array (FPGA) as shown in Figure 75. To obtain 

the second harmonic a minimum of 6 point Discrete Fourier Transform (6 pt DFT) needs 

to be computed. This implementation was shown using an FPGA at low phase 

modulation frequencies Hz650≈Ω  [71]. The 6 pt DFT gives the 1st and 2nd harmonics - 

of which the 1st harmonic is proportional to the slope of the optical curve (1st derivative) 

which in turn is proportional to the reflectivity of the sample. The second harmonic is 

proportional to the error which can be fed to a PID controller to control the position of the 

tunable grating. 
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Figure 75 – A 6 point DFT method implementing harmonic distortion based noise 

reduction algorithm 

The results of this implementation are shown in Figure 76. It can be seen that when the 

controller is off the sensitivity of the controller and the error can be observed as first two 

harmonic peaks shown by f1 and f2. When the controller is on, it can be observed that 

the sensitivity improves by 12.5dB and the error signal reduces by 35.5dB, hence 

improving the SNR by up to 48dB. It can also be seen that the first harmonic shows a 

noise shoulder, when the controller is off, which results from the low frequency noise. 

When the controller is off the noise shoulder also reduces. 
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Figure 76 – Reduction of noise using a 6 point DFT algorithm. The second harmonic 

shown by f2 is reduced by the controller and the first harmonic f1 which is proportional to 

the sensitivity is increased 

The frequency of operation for the 6 pt DFT method was very low for reducing ambient 

vibrations. The reason for the slow operation was found to be the computational intensity 

of the algorithm. A 6 pt DFT involves the least number of calculations; it has the 

following multiplication constants for obtaining the second harmonic imaginary (or real) 

component - sin(0), sin(2pi/3), sin(4pi/3),…, sin(10pi/3) (or cosines of these).  The real 

components involve irrational numbers and some accuracy is sacrificed because of the 
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fixed point mathematics in FPGA. The multiplication operations make the process 

computationally intense and it was seen to fail above 1 kHz loop rate. Another limitation 

was realized with the sine generation signal. Sine look-up table was used to generate 

sine wave which can not be synchronized beyond 13kHz, because of the tick-times for 

the sine generation loop and data acquisition need to be integer multiple of each other. 

A ratio of 3:512 ticks is the minimum achievable ratio for a sine lookup table of 1024 

discrete values. 

The problem of low speed was resolved by converting the complex number to a real 

number. Taking advantage of constant phase, only cosine (real) or sine (imaginary) 

component of the second harmonic can be observed. For maximum sensitivity, the 

phase of the data acquisition is adjusted so that the other component becomes zero. 

Now, the magnitude becomes the value of the real or imaginary part and the phase 

becomes the sign of the number. This makes some of the operations for squaring the 

real and imaginary components unnecessary. 

Another algorithm was developed to tackle this problem. An 8 pt DFT could be used to 

instead of a 6 pt DFT to reduce the complexities of the computations. A 8 pt DFT 

involves 8 operations with sin(0), sin(pi/2), sin(pi),…, sin (7pi/2) i.e. 0, 1, 0, -1, 0, 1, 0, -1; 

These are 4 zeros and 1s and -1s (Figure 77) Hence, it also has only 4 operations 

because of 4 zeros and there are no irrational multiplicands. The algorithm worked well 

at 40 kHz. (Here the grating vibrates at 40 kHz and data acquisition is done at 160 kHz. 

PID output is generated after every cycle i.e. at 40 kHz. This speed is faster than 

required for reducing noise below 1 kHz. Maximum rate of data acquisition for the FPGA 

is 200 kHz and synchronization requires the frequency to be 10 kHz multiplied/divided 

with some power of 2. Hence, 40 kHz is the maximum frequency of vibrations can be 

achieved with this method. 
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Figure 77 – 8 point DFT for second harmonic. The second harmonic sinusoid shows the 

multiplication constants. A sample PD output is used to demonstrate the calculation of the 

amplitude of the second harmonic 

Calculating the first harmonic is also as simple as the second. Here we use the 4 pt 

DFT. The multiplicands become to 0, sin(pi/2),…, sin(3pi/4) i.e. 0, 1, 0, -1. (Figure 78). 

The points with nonzero multiplicands can be chosen to be the same ones which were 

used in the second harmonic calculation. Only difference is the signs of the 

multiplicands. Hence, now the data acquisition can be done at 2xF frequency. 
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Figure 78 – A 4 pt DFT for the first harmonic. The first harmonic sinusoid shows the 

multiplication constants. A sample PD output is used to demonstrate the calculation of the 

amplitude of the first harmonic. 

Thus, the harmonic distortion based method has many shortcomings. To overcome 

some of the problems, the novel recurrent calibration based control algorithm is 

designed. This algorithm splits the active tuning in 2 steps, in which the first step is used 

to characterize the optical curve and the second step uses the intensity of a diffraction 

order as feedback to tune the individual gratings to the respective desired points of 

operations. This algorithm overcomes the problems in harmonic distortion based 

methods at the cost of some dead time of frequent calibration steps when it does not 

take measurements. Next sections explain the recurrent calibration based control 

algorithm in detail. 
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5.2 Recurrent calibration based active control - modeling and 

experiments 

5.2.1 µSGI system model  

To analyze the behavior of the control system, a system model is built using MATLAB 

SIMULINK and SISO Tool. The detailed view of this model is shown in Figure 80. For 

analysis, the system is linearized about the desired point of operation. The input to the 

system is the high frequency signal and low frequency noise and the output is measured 

at the summation of inputs and actuator output from the feedback loop.  

The photo-detector gain is obtained from the specifications. The controller transfer 

function (TF) is known from the control algorithm and the grating transfer function is 

obtained experimentally (see Figure 79). These transfer functions are as follows:  

Photo detector: 0447.0)( =zF  (5.4) 

Controller: 
zzz

gain
zC

1
.

6812.0

3188.0
.

1
)(

−−
=  (5.5) 

Tunable grating:
84.0314.0

02.139.13
)(

2 ++

+
=

zz

z
zA   (5.6) 

(At sampling rate 180 kHz) 

The frequency at which the FPGA control loop runs is 180 kHz (see Figure 80) which 

shows the bandwidth of 90 kHz using the Nyquist criterion). The actuator is linearized 

using a look-up table to a constant gain transfer function. The second term in the 

controller transfer function represents a low pass filter (LPF) with cutoff frequency of ~11 

kHz. This filter separates the low frequency noise from the high frequency signal. It also 

serves as the anti-aliasing filter. The delay in the FPGA controller is found to be ~6 µs; 
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which is very close to 5.556 µs, the sampling time for the controller. This is expected 

because the control loop frequency is slower than the maximum input and output 

sampling rates (200 kHz and 1 MHz respectively) for the FPGA. The third term in the 

controller transfer function represents the delay which is rounded off to 1 sampling 

period in the FPGA. 
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Figure 79 – Frequency response of the tunable grating obtained from the experiments and 

the second order approximation of the curve in discrete (z) domain at 180 kHz.  

The root locus plot of the open loop system is shown in the Figure 81. It can be seen 

that the closed loop response consists of a high frequency component which is on the 

root locus starting from the poles due to the low damping resonance of the grating 

membrane, and a low frequency component which is on the root locus starting from the 

low pass filter pole. The cutoff frequency of the controller is determined by this low 

frequency response and can be estimated to be ~6 kHz. 
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Figure 80: Schematic of the active control of tunable grating system 
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Figure 81: Root-locus plot of the open loop control 
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The Bode diagram of the controller (see Figure 82) shows the expected noise reduction. 

It can be seen that the cutoff frequency is around 6.5 kHz which gives about 100 times 

noise reduction at 100 Hz. As seen in the root locus diagram (Figure 81), the low 

frequency response shows a peak at the corner frequency (~6.5 kHz) as predicted. 

There is a trade-off between the corner frequency and the amplitude of this peak. As the 

controller gain increases the noise reduction cut-off frequency improves, which means 

better noise reduction at lower frequencies, which is desirable. However, at the same 

time the lower frequency poles on the root locus go farther from the real axis. This 

implies a higher amplitude peak at the low frequency as shown in the bode diagram. 
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Figure 82 – Bode diagram of the closed loop controller 

5.2.2 Experimental setup 

To demonstrate the active control and verify the model, a µSGI based parallel 

interferometry setup shown in Figure 87 was implemented. The setup contains 2 sets of 
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measurement systems which are used to demonstrate parallel operation. Two samples 

are placed in front of two µSGIs. Laser light is focused on the gratings and the orders 

are collected by two different photo-detectors. The output of the photo-detector is used 

to measure the displacement of the samples and the same output is fed to the FPGA 

after low pass filtering. National Instruments’ NI PXI 7831R FPGA system [72] is used 

for implementing active control. It provides 8 analog input output channels for parallel 

implementation and has a 1M gate reconfigurable FPGA board which can be easily 

programmed with LabVIEW FPGA GUI. This FPGA is used to run multiple parallel loops 

of control algorithm and generate analog output. The analog output actuates the 

respective tunable gratings. Two parallel loops of the control algorithm were run 

simultaneously on the FPGA at ~180 kHz. 
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Figure 83 – Experimental setup used for demonstration of the active control scheme 
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5.3 Comparison of simulation and experimental results 
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Figure 84 – Experimental results of the active noise reduction. 

The performance of the active control of the tunable gratings is tested in ambient noise 

conditions. A Digital Signal Analyzer (DSA) was used to plot the noise density spectrum 

of the vibration noise in 100 kHz bandwidth. The voltage noise density spectrum 

converted to displacement noise is plotted in Figure 84. The electronic noise is observed 

at approximately 6x10-5nmrms/√Hz. The noise without active control is observed at 

frequencies lower than 8 kHz with dominant peaks at in 1 kHz bandwidth. The maximum 

noise is observed at approximately 215Hz with 0.2 nmrms/√Hz. The noise data is 

acquired multiple times over different bandwidths for better accuracy and plotted on the 

same graph. The noise data is also acquired when the active control is active and is 

plotted on the same graph. It shows almost 2 orders of improvement in noise level at 20 

Hz. An increase in the noise with active noise control is also observed at 6.5 kHz as 

predicted by the system model. This noise peak is introduced by the controller as a 
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result of high control gain. The peak value can be reduced by lowering the control gain 

which results in lower cut-off frequency. A trade-off between the gain and cut-off 

frequency is made by limiting the peak to less than 6dB. A base noise level of 1x10-4 

nmrms/√Hz is achieved by the active noise control. The peak at 50 kHz corresponds to 

the resonance frequency of the tunable grating. A small peak at 60Hz results from the 

coupling between AC electric source and system circuitry. Other smaller peaks at higher 

frequencies result from the electronic noise. 
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Figure 85 – Noise reduction performance – comparison of simulation and experimental 

results 

Figure 85 compares the active control performance of the FPGA and the model. The 

simulated noise performance curve shows the bode plot of the closed loop control 

system. The experimental curve shows the observed noise reduction (ratio of noise 

without control and with control in Figure 84). The two curves show good agreement. 
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The cutoff frequency for the active control is observed around 6.5 kHz. Noise reduction 

performance at frequencies lower than 50Hz becomes constant because of the analog 

to digital (A/D) conversion resolution of the FPGA i.e. if the noise amplitude is very small 

and resolution of the controller is not good enough, then the controller cannot see it. For 

the same reason, the controller performs better than predicted by the model in the noise 

prone bandwidth (200 Hz to 1 kHz). The peak at 50 Hz corresponds to the AC coupling 

and could not be manipulated by the controller. With the help of a FPGA, parallel 

processing of multiple control loops is possible. To demonstrate the parallel 

implementation of this algorithm a setup as shown in Figure 87 is built. Two flat samples 

are mounted on two piezoelectric actuators which generate artificial low frequency 

vibrations. The algorithm is successfully used to actively control both tunable gratings 

simultaneously. This result has been demonstrated in [71, 73, 74]. 
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Figure 86 – (A) Blue – without lookup positive gain (B) Green – without lookup negative 

gain (C) Red – with lookup positive or negative gain. 
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The simulated effect of look-up table is shown in Figure 86. It can be seen that without 

the look-up table the noise reduction changes with the grating position; however, the 

look-up table stabilizes the noise reduction over the complete range of motion. 
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CHAPTER 6 

APPLICATION ORIENTED CONTROLLER DEVELOPMENT AND 

DEMONSTRATIONS 

The µSGI is a miniaturized metrology tool which has vibration noise reduction capability. 

This enables various different applications ranging from vibration measurement, 

reflectivity measurement, and frequency response measurement. Additional ability of 

array operation makes the metrology faster. Scanning of sample surfaces enables 

mapping their dynamic amplitude and profiles. The control algorithm being a digital 

algorithm provides easy way for development to achieve different capabilities like long 

range measurement.  

Traditionally many of these tasks would require a different metrology tool; however µSGI 

offers all the capabilities in a single miniaturized tool. This chapter discusses and 

demonstrates the development in the control algorithm to achieve several capabilities. 

6.1 Parallel operation of µSGI 

The µSGI is developed to enable parallel operation of multiple metrology tools to scan a 

large sample area. The miniaturization of the grating interferometer and optical 

components enable the parallel operation physically. From active noise control point of 

view, the digital implementation on the FPGA (Field Programmable Gate Array) proves 

beneficial. The FPGA enables multiple parallel loops running in parallel, independent of 

each other. The FPGA used National Instruments (NI) PXI 7831R provides 8 analog 

input and 8 analog output ports. 
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6.1.1 Experimental setup 

To demonstrate the parallel operation, a 2x1 array of µSGIs is chosen. Two parallel 

control loops are run on a single FPGA. To acquire data two ports of an oscilloscope are 

used. The experimental setup, similar to the one shown in Figure 43, is built as shown in 

Figure 87. Two reflectors are mounted on two different PZTs. These reflectors serve as 

the surfaces under observation and hence can be used to show the parallel operation of 

µSGIs. Focused laser beams are passed through the gratings of the µSGIs. For both 

µSGIs, one of the first orders of interference is captured by the corresponding PDs. The 

PD outputs are filtered using a low pass filter before it is fed to the FPGA. 
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Figure 87 – Experimental setup used for demonstration of the active control scheme 

6.1.2 Demonstration of parallel operation 

The PZTs are actuated with a low frequency signal (~200Hz,~300Hz which emulates 

vibration noise) and high frequency signal (~10kHz which emulates the sample motion). 

The two corresponding gratings are controlled using a multi-channel FPGA. The PD 

output voltage waveform is acquired using an oscilloscope and is converted in to 
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displacement using the sensitivity obtained from the control algorithm. The controllers 

are switched on and off one by one to demonstrate parallel operation. The displacement 

waveforms are plotted in Figure 88. It can be seen that without the controller the 

waveforms are not at the highest sensitivity positions and the oscillations due to the low 

frequency noise are very high. The controller reduces the lower frequency signal by 

approximately 2 orders of magnitude. Two controllers can be seen operating 

independent of each other which demonstrates the parallel operation. 
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Figure 88 - Parallel active noise reduction using two µSGIs on the same chip. (µSGI 1 -

blue, µSGI 2 – pink) (a) Both controllers off (b) Controller 1 on, controller 2 off (c) 

Controller 1 off, controller 2 on (d) Both controllers on. 

The signal is obtained by filtering the data with a high pass filter (HPF). This filtered data 

is converted in to displacements and the dataset for sample 1 is shown in Figure 89. It 

can be seen that without controller the high frequency vibration amplitude gets affected 

by the low frequency noise. However, with the active control the amplitude of high 

frequency vibrations signal remains constant. This demonstration shows nm-scale 



www.manaraa.com

111 

dynamic measurement capability of the µSGIs with active noise reduction. (These 

results are published in [75].) 
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Figure 89 – High-pass filtered data. (a) PD1 output with controller off (b) PD1 output with 

controller 1 on. 

6.2 Long range measurement implementation 

Laser interferometric metrology has been well known for its non-contact, high resolution, 

high bandwidth measurements. In its simplest form, a phase sensitive interferometer 

offers nm-level resolution over half a wavelength (316nm for He-Ne laser) of 

unambiguous range. With growing quality control and efforts towards miniaturization, this 

resolution and range does not satisfy the needs of many different applications like 

precision machining, Atomic Force Microscopy, biomedical applications and MEMS like 
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micromirrors, which require not only very high precision but also a longer range of 

operation. 

6.2.1 Methods for multi-wavelength displacement measurements 
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Figure 90 – The quadrature output using harmonic distortion method 

The limitation of the range arises from the periodic nature of the response curve. One 

measurement reading corresponds to several periodic distances; which is ambiguous. 

Several methods are also implemented to increase the range of operation of the laser 

interferometers. These include using heterodyne interferometers which use multiple-

wavelength source to eliminate the ambiguity, which extend the range to the synthetic 

wavelength of the wavelengths. This range is extended further by using the optical 

phase information [76]. Another method uses tunable laser in heterodyne interferometry 

for absolute distance measurement [77]. In single wavelength laser interferometers, the 

ambiguity can be reduced by using the effect of coherence length of the laser [78]. 

Several methods implement different techniques to generate a quadrature signal from 

the interferometric response [79, 80]. Figure 90 shows a way to obtain quadrature output 
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using the harmonic distortion based method. Another method obtains a quadrature 

signal using phase-shifted double grating [81]. However, it is challenging to obtain a very 

high resolution and an extended range simultaneously. 

6.2.2 Long range recurrent calibration based algorithm 

The recurrent calibration based control enables operation at the most sensitive point on 

the optical curve. This enables high precision (sub-pm resolution) measurement of high 

frequency (>10 kHz) low amplitude (<10nm) vibrations simultaneously. This algorithm is 

modified as shown in Figure 91. The displacement measurement is obtained with three 

different ranges of motions  

1) First of these measurements is the high precision high frequency dynamic motion 

obtained directly from filtering the photo-detector signal through a high pass filter (HPF). 

The filtered signal is converted to displacements using the sensitivity of the 

interferometric measurement at the desired point of operation. This is the default 

measurement from the recurrent calibration method. 

2) The tunable grating follows the sample motion in lower bandwidth. Hence, the tunable 

grating motion gives a parameter to measure the sample motion. The grating motion is 

governed by the controller output and it can be used for measurement for a pre-

calibrated tunable grating. The controller output before look-up table is linear and is 

proportional to the grating displacement; hence it is used for easy conversion to 

distances. 

3) When the tunable grating reaches one of its range-limits, the gain reversal algorithm 

moves it backwards to the next feasible desired point of operation. The consecutive 

desired points of operation are quarter wavelength (λ/4 or half a fringe) apart. These 
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jumps are counted by keeping track of the gain reversal events with their direction. Each 

jump being λ/4 distance, gives the third set of measurements. 
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Figure 91 – Long range detection algorithm – The displacement measurement is done at 

three different resolutions 1) High frequency (>6.5kHz) high resolution (<0.1 pm/√Hz) data 

acquisition using path stabilized µSGI 2) Low frequency (<6.5kHz) low resolution (nm 

level) data acquisition using grating motion, has limited range (λ/4) 3) Low frequency 

(<6.5kHz) low resolution (λ/4) data acquisition using grating jump count 

The total sample displacement is the sum of these three displacements. The high and 

low pass filters (LPF) are designed to have same cut-off frequencies and same order to 

make sure that no motion measurement is lost. This ensures that the signal which does 
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not pass the HPF is measured by the controller and vice versa. At the gain reversal 

event the grating is forced to move by a λ/4 distance to minimize the time of jump. 

6.2.3 Experimental setup 
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Figure 92 – Experimental setup to show long range high resolution operation of µSGI  

To verify the extended range recurrent calibration algorithm an experimental setup is 

built as shown in Figure 92. The sample is placed on a piezo-electric transducer (PZT), 

which in turn is placed on a motorized linear stage. The photo-detector output is passed 

through filters and is fed to the controller and data acquisition systems (DAQ) as 

explained in the algorithm. The PZT generates a motion which is superposition of two 

sinusoidal motions – 1) 100Hz, 100nm; 2) 18 kHz, 1.25nm. The motorized stage moves 

the sample by longer distances with a constant velocity 2µm/s.  
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6.2.4 Demonstration of long range measurement operation 

The high frequency high resolution data acquisition is used to measure the high 

frequency signal applied to the PZT. Figure 93 shows the acquired data over a 0.5ms 

interval. A 2.5nm signal is well reconstructed by the data acquired from the µSGI. 
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Figure 93 – High frequency low amplitude vibration obtained from high resolution data 

acquisition 

Figure 94 shows the low frequency vibrations of the sample tracked by recording the 

grating motion over time. It can be seen that the grating follows the sinusoidal motion 

and the linear motion. Whenever the grating reaches its limits a jump event can be 

observed. Each jump event brings the grating to the next desired point of operation 

which is at a λ/4 distance. 

Figure 95 shows the displacement output corresponding to the jump events. Each jump 

event corresponds to a λ/4 displacement in the direction of the jump. It can be seen that 

the jump events roughly follow the low frequency vibrations of the sample and also the 

linear motion of the sample. Thus a sample motion over a long range can be measured. 
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Figure 94 – Low frequency vibrations obtained from the surface tracking of the grating 

(over 500ms and zoomed in over 100ms) 
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Figure 95 – Long range motion obtained from the grating jump counting (over 500ms and 

zoomed in over 100ms) 
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Figure 96 – Addition of low frequency vibration measurement (blue) and jump counting 

measurements (green) gives total displacement measurement (red) 

The total displacement is the sum of all three displacements obtained from the three 

measurements. The low frequency measurements can be added to reconstruct the low 

frequency motion. Figure 96 shows the addition of the two measurements generating the 

total displacement. The total displacement observed over a 0.5s time is shown in Figure 

97. It can be seen that the total displacement is well reconstructed over 1µm 

displacement. 

During each jump event the tunable grating travels over a peak or valley of the optical 

curve and stabilizes at the next feasible desired point of operation. The tunable grating 

has a low damping ratio which allows fast operation however it also causes long settling 

time. During the grating motion between two desired points of operations and until it is 

stabilized at the next desired point of operation the µSGI can not be used for measuring 

high frequency high resolution displacement. This is the dead time corresponding to the 

jump. Figure 98 shows a high frequency high resolution data obtained during the jump 
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event. It can be seen that the grating takes approximately 250µs to stabilize. During this 

time the high frequency high resolution data gets corrupted by the displacement data 

generated by the tunable grating itself. Depending on the frequency of the jump events 

the percent data loss varies. 
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Figure 97 – Total displacement obtained from addition (over 500ms and zoomed in over 

100ms) 

In conclusion, the modified recurrent calibration based algorithm overcomes the range 

limitations in high resolution displacement metrology. The µSGI demonstrates its long 

range high resolution measurement capability by measuring the displacements at three 

different resolutions. 
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Figure 98 – Grating jump event stabilization time - during this time true high resolution 

measurement can not be obtained 

6.3 Scanning interferometry with µSGI (Case studies) 

6.3.1 Dynamic metrology of rectangular actuable membrane with µSGI  

6.3.1.1 Rectangular actuable membrane 

The sample membrane is an 80µm X 80µm gold membrane fabricated on a quartz 

substrate. This type of structure can be used as a high bandwidth actuator for many 

applications like Force Sensing Integrated Tip and Active Readout Structure (FIRAT) 

[82] or as a Radio frequency RF-switch. The membrane is shown in Figure 99 is 

fabricated for its use in a FIRAT structure, as a rectangular clamped-clamped beam. 

The metal electrode and membrane structures have good reflectivity; however the quartz 

substrate is mostly transparent to the visible light. The µSGI also enables to map the 

reflectivity of the sample surface, which can be utilized to realize the static shape of the 

structures. The membrane is actuated by electrostatic forces at 57.4 kHz 7V peak to 

peak amplitude and 13.5V bias voltage. The dynamic vibration profile of the membrane 

is also obtained by scanning the membrane using µSGI. The following section 

demonstrates the scanning application. 
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Figure 99 – Rectangular actuable membrane used as sample 

6.3.1.2 Measured reflectivity map of the membrane structure 

A raster scan of the membrane structure was performed as shown in Figure 100. 80 

lines with 80 points per line were scanned with a total of 6400 pixels. Each pixel is 

1.5µm X 1.5µm in size. The raster scan consists of lines in the Y direction as shown in 

Figure 100. Figure 100 shows a schematic scan on an image obtained by a microscope 

and it does not represent the image scanned exactly. 



www.manaraa.com

122 

80
 p
oi
nt
s

80 lines

Y

X
 

Figure 100 – Raster scan of the membrane structure 
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Figure 101 – A reflectivity profile of the sample obtained by µSGI 

Figure 101 shows the reflectivity profile of the sample. The metal structures on the 

quartz substrate can be distinctly observed. The reflectivity of the membrane over varies 
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over its area with the area towards right being more reflective than the area towards left. 

This may be due fabrication related issues. The top clamped part of the membrane 

shows uniform reflectivity from right to left which confirms that the reflectivity change is 

not an outcome of the µSGI setup. 

6.3.1.3 Vibration profile measurement 
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Figure 102 – Vibration amplitude map directly measured from photo-detector signal 

The amplitude of the optical signal measured at each pixel is also mapped and is shown 

in Figure 102. It can be seen that only the actuable membrane portion of the sample 

surface shows vibrations. The amplitude also seems to be proportional to the 

reflectivities at the corresponding pixels as shown in Figure 101. This is expected 

because the sensitivity of the optical signal is proportional to the reflectivity of the 

sample. 
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Figure 103 – Vibration amplitude map of the membrane 

The peak to peak amplitude ( ppV ) of the optical curve, which is proportional to the 

reflectivity, can be used to determine the sensitivities of the measurement at each point. 

The sensitivity can be given by 

ppV
ySensitivit

π
λ

2
=  (6.1) 

Using the sensitivity the real vibration amplitudes can be found out by multiplying the 

sensitivity with the vibration signal obtained from photo-detector. The vibration amplitude 

map of the FIRAT is shown in Figure 103. It can be seen that the vibration amplitudes 

are more uniform and show the first mode of vibration. The first mode of vibration is 

identified by peak vibration amplitude at the center and it dies down to zero towards the 

clamped edges.  
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It can be seen that the fixed metal areas where reflectivity is high the vibration amplitude 

is zero. However, on the quartz substrate where the reflectivity is not so good, uniform 

low vibration amplitude is observed. This is due to the fact that the sensitivity has ppV  

term in the denominator. Hence, low ppV  gives rise to high sensitivity which enhances 

the noise in the system. This noise can be filtered by filtering out data with low ppV . 

However, the slight effect of reflectivity helps understand the orientation of the device 

better. Hence, such filtering is not done here. (Next case uses such filtering). 

6.3.2 Dynamic metrology of cantilever probe 

The FIRAT membrane tested is overly damped and does not show even first resonance 

peak. Second and higher modes are good to test the system better as the phase of 

vibrations change over the sample surface. Hence a cantilever probe used in Scanning 

Probe Microscopy is used. This particular probe is manufactured by Veeco Probes and it 

is classified as a Nitride probe (NP-20). 

 

Figure 104 – Veeco NP-20 silicon nitride probe [83] 

A picture of this probe is shown in Figure 104. It can be seen that the probe is triangular 

in shape with a pyramidal probe at its tip. This cantilever is made of silicon nitride and is 

coated with thin gold layer. 
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This cantilever is mounted on a piezoelectric transducer stage and the stage is vibrated 

to actuate the cantilever. The cantilever shows a resonance peak at 91.4 kHz and 

another peak at 244 kHz. The cantilever was scanned by the µSGI for both these cases. 

The reflectivity, vibration amplitudes and phase data is collected. 

6.3.2.1 Resonance mode 2 

The reflectivity image (Figure 105) shows uniform reflectivity over the cantilever and 

almost zero where there is no cantilever surface as expected. 
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Figure 105 – Reflectivity image of the cantilever 

The sensitivity corrected vibration amplitude image is shown in Figure 106 which clearly 

shows a region on the cantilever which has nearly zero amplitude. This implies that the 

cantilever is vibrating in its second resonance mode and the zero amplitude regions 

correspond to the node. (Note that the base of this cantilever is not fixed and it is moving 

with the PZT stage. Hence, the node locations are shifted from the ideal case) 
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Figure 106 – Sensitivity corrected vibration amplitudes in second mode 

The phase of vibration at the node is expected to undergo a change of 180°. The phase 

of the vibration is also obtained from the µSGI and is plotted in Figure 107. It can be 

seen that there is a distinct change in phase at the node location. 

Obtaining phase information using µSGI is tricky because the gain reversal algorithm a 

phase change of 180°. Also, the regions where the reflectivity is zero (i.e. where there is 

no cantilever surface) generate some random phase information. These regions can not 

be easily filtered as the phase wrapping brings all phases inside the 0-360° range. 

Plotting phases is also tricky as 0° and 359° look like two extremes on the plot but they 

are almost equal. To solve these problems, the following steps are done. The generated 

phase data has two prominent phases which are 180° apart at the reflective regions. 

These phases are identified and are shifted to ~90° and ~-90° by adding some phase 

bias. Gain reversal correction is then applied to the phase data, changes the phase by 

180°. The zero reflectivity phase data is filtered and is converted to zero. All the phase 

data is then wrapped with modulo 360°. The prominent phase values in the final data is 
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0° for non-reflective surface, 90° for in-phase surface and 270° for out-of-phase surface. 

This can be easily plotted. 
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Figure 107 – Phase map of the cantilever showing phase change at node in second mode 
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6.3.2.2 Resonance mode 3 

To verify the metrology operation the experiment is conducted again by actuating the 

cantilever at a higher resonance mode. The vibration amplitude image is shown in 

Figure 108. It clearly shows two resonance nodes where the amplitudes are almost zero. 
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Figure 108 – Vibration amplitude image of the cantilever in its second resonance mode 

The phase map is Figure 109 which shows the same two nodes and phase change at 

these two nodes. The data at the tip of the cantilever tends to be noisy because of the 

presence of the pyramidal sharp probe. 
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Figure 109 – Phase map of the cantilever in its second resonance mode 

In conclusion, it is demonstrated that the µSGI has dynamic displacement measurement 

ability with phase information. It also maps the surface for its static surfaces based on 

the reflectivity of the surfaces. 

6.4 Transient response measurements with µSGI 

The µSGI enables dynamic measurement of the frequency response over large 

bandwidth in a short time. The measurement method is not limited to a particular 

frequency. To demonstrate the capability, the cantilever shown in Figure 104 is used. 

Data is collected at 25 MHz over 8ms. The data is plotted in Figure 110.  

Fast Fourier Transform method is used to convert this data in to frequency domain. The 

Frequency response of the cantilever is shown in Figure 111. The first two resonance 

modes of the cantilever and the first resonance mode of the tunable grating can be 

distinctively observed in the response. Their frequency values match very well with the 

values used in the previous section. 
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Figure 110 – Transient response of the cantilever to an impulse input, obtained using µSGI  
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Figure 111 – The frequency response of the cantilever obtained from the transient 

response 
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CHAPTER 7 

CONCLUSION 

7.1 Conclusions and contributions 

This project addresses the growing need of fast, high resolution, dynamic metrology 

methods. The technology developed in this project offers a miniaturized metrology tool 

which can also be operated in array fashion. It also offers interferometric resolution while 

the use of high bandwidth actuator reduces effect of ambient disturbances. It enables 

measurements over long range of distances without loss of resolution. The dynamic 

performance of a sample can be measured over a large bandwidth in a short time using 

such a tool. It can also be scanned over samples to observe the dynamic vibrations with 

phase information. This project develops the technology and demonstrates its 

capabilities using different experiments using µSGI as a demonstration tool. 

This project also develops an SOI based tunable grating array for high bandwidth 

ambient disturbance reduction. These tunable gratings are designed and analyzed using 

the Finite Element method. The code used for the Finite Element modeling can be 

generalized to several similar membrane based devices. A MEMS based fabrication 

method is developed and implemented to fabricate such tunable membrane based 

devices. The fabrication method is easy to implement using two masks and achieves 

high yield. The tunable gratings show more than λ/2 (316nm) displacement in 30V 

actuation range and their first resonance around 50 kHz. A low squeezed film damping 

of 0.05 was achieved. The novel tunable grating membrane layout achieves a flat grating 

(<10nm maximum deformation) under the maximum actuation voltage. Stiction is also 
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avoided by the use of backside cavity. Thus this technology achieves several desired 

characters in a membrane based actuable device. 

Optical setups are designed and analyzed using diffraction optics based simulations. 

Table top and miniaturized optical setups are designed and built. A lens has been 

integrated to achieve a lateral resolution of 6.6 µm. The lateral resolution can be 

improved with better optics. A vertical resolution of 0.052 nm over 875 kHz bandwidth 

has also been obtained, which is better than most of the existing techniques. 

A novel low noise control algorithm is designed and analyzed using analytical models 

and simulations. The algorithm is implemented using FPGA at a loop rate of 180 kHz. 

Up to 40dB reduction of vibration noise is obtained in a bandwidth of 6.5 kHz which is 

sufficient to reduce the ambient disturbances. The model results are experimentally 

validated. A base noise level of 5.93 x 10-5 nmrms/√Hz is achieved. The novel control 

algorithm is modified to achieve parallel operation, where two parallel control loops are 

run independently on single FPGA, controlling two separate interferometric metrology 

tools. The range of measurement for such tools is extended by modifying the control 

algorithm, which is demonstrated by measuring a moving vibrating sample.  

The scanning ability of the metrology tools is also demonstrated by scanning two MEMS 

based dynamic samples using two µSGIs on the same chip. Reflectivity, vibration 

amplitude and phase mapping are demonstrated by scanning the samples at their 

resonance modes. The transient response of the samples is also demonstrated using 

µSGI measuring the frequency response of the sample over a large bandwidth. 
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7.2 Potential applications 

The new interferometric displacement measurement technology developed in this project 

is expected to have a broad impact. The current metrology techniques lack a high 

resolution, dynamic, long range and fast metrology technique. A metrology tool like µSGI 

array offers a solution to the problem. This study builds a platform technology which 

enables parallel, high resolution, long range, large bandwidth, fast, transient 

measurements of samples. Several such capabilities are made feasible by this 

technology may lead to several potential applications as discussed in the next section. 

The applications can be realized with the help of metrology tools like µSGI. 

The on-line metrology in MEMS fabrication is a very good application. The parallel 

operation and dynamic measurement capabilities offer a fast characterization method. 

This may result in high yield fabrication of MEMS. Parallel measurements also enable 

simultaneous dynamic measurements of large areas which can be useful for testing of 

machines like automobiles. 

High resolution dynamic displacement measurement has several applications in 

mechanical displacement based micro-sensors. Scanning probe microscopes uses the 

probe tip displacement measurement to measure the surface profile of the sample. 

Microphones use a deforming membrane to sense the pressure changes due to the 

sound. The technology developed in this project enables measurement of the membrane 

deformation with high resolution and high bandwidth. The parallel operation ability 

enables directionality measurements too. Similarly pressure sensors, accelerometers 

The long range measurement using a miniaturized probe enables very precise 

displacement measurement over a long distance. This can be useful in precision 
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machining applications. The µSGI can be integrated with the machining tool or the 

sample and live-machining status can be observed with high precision. 

The transient measuring capability is very useful in dynamic characterization of 

components. The transient response obtained from the µSGI gives a direct access to the 

frequency response of the sample without a need to sweep the frequencies. This is very 

time efficient from testing point of view. 

The µSGIs are miniaturized metrology probes and can be placed and oriented in any 

configuration. This enables three-dimensional dynamic metrology of samples with phase 

information. This opens a new dimension for three-dimensional dynamic metrology. 

7.3 Future work and recommendations 

A few design changes are suggested to improve the current µSGI. 

The backside mask could be modified to have etch lines avoid dicing step. Membrane 

size and the cavity size could be optimized to achieve more robust membranes before 

release. 

After the device layer is etched the wafer has very large area where the Silicon oxide 

causes stress. Instead of removing device layer everywhere other than the µSGI area, it 

may be useful to etch only borders of the devices and keep the rest of the device layer 

un-etched. 

Fiber collimator assembly needs further miniaturization so as that each µSGI on a chip 

can be illuminated. 
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The working distance of µSGI is 1.6mm which is low which may be improved for longer 

working distance. 

Capabilities of µSGI can be tested different surfaces especially surfaces with transparent 

coatings. 

The membrane dynamics can be altered by changing the etch hole size etc. A 

membrane with somewhat higher damping would give higher bandwidth of operation. It 

will also stabilize faster after the gain reversal jump resulting in less dead-time. 

The control algorithm can be optimized by exploring the unused proportional and 

differential gains. 

Digital signal processing (DSP) based dedicated hardware can be developed to further 

miniaturize the space requirement. Data acquisition system also needs to be more 

efficient to handle data from several µSGIs. 

The current design of µSGI array for in-line metrology assumes that the µSGI array is 

custom built to be aligned over an array of sample devices. To enable easy 

customization of array operation, an automated method may be developed to move and 

place individual µSGI elements in an array to measured the required sample points. 
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APPENDICES 

7.1 Finite element code for iterative simulations of structures with 

varying dimensions 

!Omkar Karhade  
!Georgia Tech  
!µSGI simulations  
  
!***PROGRAM INITIALIZATION***!  
FINISH !FINISH AND EXIT ANY EXISTING JOB 
/CLEAR,NOSTART !CLEAR THE DATABASE 

/FILENAME,MICROSI15e10,1 
!SET THE JOBNAME TO 'MICROSI', 
START NEW ERROR AND LOG FILES 

  
SAVE,DATA,,,ALL  
  
  
s_l=250                          !Plate length (µm) 
s_elec=80                          !Electrode width 
s_w=200                          !Plate width 
!s_t=2.5                         !Plate thickness 
s_g=100 !grating half length 
s_g_h=125 !grating hole half side width 
s_g_h1=150 !grating hole half side length 
s_g_s=115 !grating surface half side 
g_p=40 !grating period 
g_w=13 !grating width 
w_conn=20 !half width of the connections 
  
d_el=1                           !Gap 
pamb=.1   !ambient pressure (MPa) 
visc=18.3e-12                    !viscosity kg/(µm)(s) 
pref=.1                          !Reference pressure (MPa) 
mfp=64e-3 !mean free path (µm) 
Knud=mfp/d_el                    !Knudsen number 
dmp_alph=8539.1  
dmp_bt=1.2E-7  
E_si=169E3 ! Young's modulus (kg/s^2/µm) 
a_si=1e-6 ! Alpha of silicon (/deg) 
res_stress=12 ! Residual stress (kg/s^2/µm = MPa) 
res_temp=res_stress/(E_si*a_si)  
iter=1  
  
*DIM,result,,10,2  
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*DO,s_t,2.7,2.7,.4 
! Optionally change variable values for 
iterative simulations 

 
! Delete the results file beforehand from 
the directory of using this 

/PREP7  
/title, Response of uSGI  
/com    uMKS units  
/com,   Small deflection assumption  
  
et,1,200,6 ! Meshing facet 
ET,2,plane42 ! no viscocity region  
ET,3,45                          ! Structural element 
  
mp,ex,3,169e3 ! Si 
mp,dens,3,2300e-18  
mp,nuxy,3,.2  

mp,damp,1,dmp_bt       
 ! Material damping (from squeeze film 
results) 

!mp,damp,2,0   
!mp,dmpr,1,10709  
!mp,dmpr,2,0  
mp,ex,2,169e-6 ! Si 
mp,dens,2,2300e-27  
mp,nuxy,2,.2  
mp,alpx,3,a_si  
  
! Build the model  
  
rectng,-s_l+s_elec,s_l-s_elec,-s_w,s_w ! Membrane 
rectng,-s_g_h1,s_g_h1,-s_g_h,s_g_h  
asba,1,2  
numstr,area,4  
rectng,-s_g_s,s_g_s,-s_g_s,s_g_s ! Grating 
rectng,-s_g,s_g,-s_g,s_g  
asba,4,5  
rectng,-w_conn,w_conn,s_g_s,s_g_h  
rectng,-w_conn,w_conn,-s_g_s,-s_g_h  
rectng,-s_l,-s_l+s_elec,-s_w,s_w             ! Plate domain 
rectng,s_l-s_elec,s_l,-s_w,s_w  
  
*DO,NFING,-s_g/g_p,s_g/g_p-1,1  
rectng,-s_g,s_g,NFING*g_p+(g_p-
g_w)/2,NFING*g_p+g_w+(g_p-g_w)/2 ! Grating fingers 
*ENDDO  
  
asel,all  
aglue,all  
asel,all  
asel,,loc,x,-s_l,-s_l+s_elec  
asel,a,loc,x,s_l-s_elec,s_l  
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aatt,1,1,1  
asel,,loc,x,-s_elec,s_elec  
aatt,2,2,2  
allsel,all  
  
esize,10  
AMESH,all                           ! Mesh plate domain  
esize,,2  
type,3  
mat,3  
real,3  
asel,all  
  
vext,all,,,,,s_t                  ! Extrude structural domain 
allsel,all  
allsel,all  
  
nsel,s,loc,x,-s_l ! Clamp one end 
d,all,ux  
d,all,uy  
d,all,uz  
  

nsel,,loc,x,s_l 
! Induce a displacement corresponding 
to stress in other end 

d,all,ux,-2*s_l*res_stress/E_si  
d,all,uy  
d,all,uz  
  
allsel,all  
aclear,all  
save  
  
nsel,s,loc,z  
nsel,u,loc,x,-s_l+s_elec,s_l-s_elec  
cm,base,nodes  
emtgen,'base',,,'uz',-d_el       ! generate Transducer elements 
allsel,all  
nsel,s,loc,z,-d_el  
d,all,uz,0  
nsel,s,loc,z,-d_el  
d,all,volt,0  
allsel,all  
  
allsel,all  
fini  
  
/solu  
antype,static,new  
cmsel,s,base   
d,all,volt,25 ! Apply 25V 



www.manaraa.com

145 

allsel,all  
pstress,on  
!nlgeom,on ! Optionally use non-linear geometries 
solve  
fini  
  

n1=node(50,50,s_t) 
! Get z displacement for the center of the 
grating 

*GET,result(iter,1,1),NODE,n1,U,z ! Save it in result array 
  
!/solu  
!antype,modal,new ! Optionally do a modal analysis 
!MODOPT,damp,2,1E3,200E3  

!pstress,on 
! Note: nlgeom should not be on for 
pstress on in modal 

!alphad,dmp_alph  
!outres,all,all  
!mxpand,10  
!solve  
!finish  
  
!*GET,result(iter,2,1),mode,1,freq,imag  
  
iter=iter+1  
parsav,all,results, ! Save results to "results" file 
  
!***PROGRAM REINITIALIZATION***!!  
  
RESUME,DATA,,,,  
PARRES,,RESULTS,  
  
*ENDDO ! Go to next step 
  
  
Example of the result variable in the results file  
  
*DIM,RESULT  ,ARRAY,      10,       2,       1,  
*SET,RESULT  (       1,       1,       1), -
1.897968714360      
*SET,RESULT  (       2,       1,       1),-
0.7739008222002      
*SET,RESULT  (       3,       1,       1),-
0.1731741236429      
*SET,RESULT  (       4,       1,       1),-
0.7321408033868E-01  

*SET,RESULT  (       5,       1,       1),-0.3913939384123E-01 
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7.2 Optical setup simulation – diffraction optics based code 

 

clear all 

close all 

  

% ALL DISTANCES ARE ON Z AXIS 

  

% f0: at the pupil 

% f1: before the first grating 

% f2: after the first grating 

% f3: before first lens 

% f4: after first lens 

% f5: before sample 

% f6: after sample 

% f7: before second lens 

% f8: after second lens 

% f9: before second grating 

% f10: after second grating 

% f11: after adding the two beams 

% f12: at the photodiode 

  

% 40 periods, 2 µm finger, 3 µm space 

finger = 2e-6; 

space = 3e-6; 

  

N = 2^16;   % number of points : 2^15 

lambda = 633e-9; 

  

L = 14400e-6; 

grating_start = -100e-6; 

grating_end = 100e-6; 

dx0 = L/N; 

k = 2*pi / lambda; 

f = 1e-3;  % focal distance of the lens 

R_sample = 0.7; % sample reflectivity 

  

z_pg=8e-3;  % z_pg : distance from pupil to grating 

z_gl=.5e-3; % z_gl : distance from grating to lens 

z_ls=0;   % z_ls : distance from lens to sample (defined in the loop) 

z_pd=8e-3;  % z_pd : distance from grating to photodiode 

  

order0 = zeros(1,N); 

order1 = zeros(1,N); 

  

order1start=-1.3e-3; 

order1end=-.7e-3; 

order0start=-.3e-3; 

order0end=.3e-3; 

  

%tic 

% DEFINE GAUSSIAN BEAM 

beam_width = 280e-6; 

pupil_width = 100e-6; 

beam = sqrt(exp(-(-N/2+1:N/2).^2./(beam_width/2/dx0).^2)); 
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% 0) CROP THE BEAM 

f0 = zeros(size(beam)); 

f0(N/2-1-

round(pupil_width/dx0/2):N/2+round(pupil_width/dx0/2))=beam(N/2-1-

round(pupil_width/dx0/2):N/2+round(pupil_width/dx0/2)); 

  

p=0; 

% 1) PROGAGATE TILL GRATING 

[f1,dx1,x1]=fresnel(f0,dx0,z_pg,lambda); 

figure; 

p=p+1;subplot(3,2,p);plot(x1,abs((beam).^2));xlim([-500e-6 500e-

6]);title('1. Gaussian beam');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

p=p+1;subplot(3,2,p);plot(x1,abs((f0).^2));xlim([-500e-6 500e-

6]);title('2. Cropped beam');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

p=p+1;subplot(3,2,p);plot(x1,abs((f1).^2));xlim([-500e-6 500e-

6]);title('3. At the grating');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

  

f_grating = zeros(1,N); 

for i = 1:N 

    if (rem(i*dx1,finger+space) < space) 

        f_grating(i) = 1; 

    end 

    if (i*dx1-dx1*N/2 < grating_start) || (i*dx1-dx1*N/2 > grating_end) 

        f_grating(i) = 0; 

    end 

end 

  

% 2) PASS THROUGH 1ST GRATING 

f2= f_grating.*f1; dx2 = dx1; x2=x1; 

p=p+1;subplot(3,2,p);plot(x2,abs((f2).^2));xlim([-500e-6 500e-

6]);title('4. After grating');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

  

% 2B) BEAM REFLECTED FROM GRATING 

f_inverse_grating = zeros(1,N); 

    for i = 1:N 

        if (rem(i*dx1,finger+space) < space) 

            f_inverse_grating(i) = 1; 

        end 

        if (i*dx1-dx1*N/2 < grating_start) || (i*dx1-dx1*N/2 > 

grating_end) 

            f_inverse_grating(i) = 0; 

        end 

    end 

f2 = f_inverse_grating.*f1; 

p=p+1;subplot(3,2,p); plot(x2,abs((f2).^2));xlim([-500e-6 500e-

6]);title('4B. Beam reflected from grating');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

     

% 3) 1ST GRATING TO 1ST LENS 

[f3,dx3,x3]=fresnel(f2,dx2,z_gl,lambda); 

p=p+1;subplot(3,2,p); plot(x3,abs((f3).^2));xlim([-500e-6 500e-6]); 

title('5. At the lens');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

  

% 4) FIRST LENS 
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f_lens(1:N) = exp(-j*k*((-N/2+1:N/2)*dx3).^2/(2*f)); 

f4 = f3.*f_lens; dx4 = dx3; x4 = x3; 

  

iter=1; 

for disp=-100e-9:30e-9:300e-9 

  

    close all; 

     

    z_ls=1e-3+disp;   % z_ls: 2 x distance from the lens to the 

substrate 

  

    % 5) FIRST LENS TO SAMPLE 

    [f5,dx5,x5]=fresnel(f4,dx4,z_ls,lambda); 

    figure;p=0; 

    p=p+1;subplot(3,2,p); plot(x5,abs((f5).^2)); xlim([-1500e-6 1500e-

6]);title('6. At the sample');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

  

    % 6) PASS THROUGH SAMPLE 

    f6 = f5.*R_sample; dx6 = dx5; x6 = x5; 

  

    % 7) SAMPLE TO 2ND LENS 

    [f7,dx7,x7]=fresnel(f6,dx6,z_ls,lambda); 

    p=p+1;subplot(3,2,p); plot(x7,abs((f7).^2));xlim([-1500e-6 1500e-

6]);title('7. Back to lens');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

  

    % 8) 2ND LENS 

    f8 = f7.*f_lens; dx8 = dx7; x8 = x7; 

  

    % 9) 2ND LENS TO GRATING 

    [f9,dx9,x9]=fresnel(f7,dx7,z_gl,lambda); 

    p=p+1;subplot(3,2,p); plot(x9,abs((f9).^2));xlim([-1500e-6 1500e-

6]);title('8. Back to grating');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

  

    f_grating = zeros(1,N); 

    for i = 1:N 

        if (rem(i*dx9,finger+space) < space) 

            f_grating(i) = 1; 

        end 

        if i*dx9-dx9*N/2 < grating_start || i*dx9-dx9*N/2 > grating_end 

            f_grating(i) = 0; 

        end 

    end 

  

    % 10) PASS THROUGH 2ND GRATING 

    f10= f_grating.*f9; dx10 = dx9; x10=x9; 

    p=p+1;subplot(3,2,p); plot(x9,abs((f9).^2));xlim([-1500e-6 1500e-

6]);title('9. After passing through the gratings second 

time');xlabel('Distance from axis (m)'),ylabel('Normalized intensity'); 

  

    % 11) ADD THE INTERFERING BEAMS 

  

    if dx2==dx10 

        f11=f2+f10;dx11=dx10;x11=x10; 

    elseif dx2>dx10 

        f2_new=zeros(1,N); 

        for i=1:N 

            f2_new(i)=f2(round(N/2+(i-N/2)*dx10/dx2)); 
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        end 

        f11=f2_new+f10; dx11=dx2; x11=x2; 

    else 

        f10_new=zeros(1,N); 

        for i=1:N 

            f10_new(i)=f10(round(N/2+(i-N/2)*dx2/dx10)); 

        end 

        f11=f10_new+f2;dx11=dx10;x11=x10; 

    end 

     

    p=p+1;subplot(3,2,p); plot(x2,abs((f2).^2));xlim([-1500e-6 1500e-

6]);title('10. Addition of two interfering beams (4B and 9) at the 

grating');xlabel('Distance from axis (m)'),ylabel('Normalized 

intensity'); 

  

    %AT PHOTODIODE 

    [f12,dx12,x12]=fresnel(f11,dx11,z_pd,lambda); 

    p=p+1;subplot(3,2,p); plot(x12,abs((f12).^2));xlim([-1500e-6 1500e-

6]);title('11. At the PD');xlabel('Distance from axis 

(m)'),ylabel('Normalized intensity'); 

  

  

    for i=1:N 

        if (x12(i)>order0start)&&(x12(i)<order0end) 

            order0(i)=1; 

        end 

        if (x12(i)>order1start)&&(x12(i)<order1end) 

            order1(i)=1; 

        end 

    end 

    order0profile=order0.*f12; 

    order1profile=order1.*f12; 

  

    I1(1,iter) = sum(abs(order0profile.^2)); 

    I0(1,iter) = sum(abs(order1profile.^2)); 

    I1(1,iter) = max(abs(order0profile.^2)); 

    I0(1,iter) = max(abs(order1profile.^2)); 

    I0(2,iter) = disp; 

    iter=iter+1; 

end 

figure;plot(I0(2,:),I1(1,:));xlabel('Displecement of sample 

(m)');ylabel('Normalized intensity of the first order'); 

 

 

 

 

FILE fresnel.m 

 

function[f1,dx1,x1]=fresnel(f0,dx0,z,lambda) 

N = length(f0);  

k = 2*pi/lambda; 

zcrit= N*dx0^2/lambda; 

  

if z < zcrit 

du=1./(N*dx0); 

u = [0:N/2-1 -N/2:-1]*du; % Note order of points for FFT 

H = exp(-i*2*pi^2*u.^2*z/k); % Fourier transform of kernel 

f1=ifft(fft(f0).*H);%Convolution 

f1=f1.*exp(-j*2*pi*z/lambda); % ADDED NOW 

dx1=dx0; 
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x1 = [-N/2:N/2-1]*dx1;%Baselineforoutput 

end 

  

if z >= zcrit 

x0=[-N/2:N/2-1]*dx0;%Inputf0isinnaturalorder 

g = f0 .* exp(i*0.5*k*x0.^2/z); % First phase factor 

G = fftshift(fft(fftshift(g))); % Fourier transform 

du=1./(N*dx0);dx1=lambda*z*du; 

x1=[-N/2:N/2-1]*dx1;%Baselineforoutput 

f1=G.*exp(i*0.5*k*x1.^2/z);%Secondphasefactor 

f1=f1.*dx0./sqrt(i*lambda*z); 

f1 = f1.*exp(-j*2*pi*z/lambda); % ADDED NOW (THE PHASE CHANGE DUE TO Z 

TRAVEL) 

end 

 

 

7.3 Implementation on FPGA and RT using LabVIEW 

The active path stabilization is implemented on FPGA using LabVIEW FPGA module. 

LabVIEW gives a user friendly tool to program the hardware. The graphical user 

interface (GUI) of LabVIEW shows the program in the form of block diagrams and the 

data flow through the blocks. It is easy to understand the program using the GUI of 

LabVIEW, hence snapshots of the code is shown in Figure 112 to Figure 115. This 

program is run on FPGA PXI-7831R, and is called from a Real-Time (RT) program run 

on a RT controller. Data is continuously transferred between the FPGA and the RT. 
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Look-up table transfer from RT to FPGALook-up table transfer from RT to FPGA

 

Figure 112 – LabVIEW FPGA code – block 1 receives the calibration chart (non-linearity 

lookup table) from the RT 

Figure 112 shows the first step of the code which acquires the look-up table from the RT. 

The RT runs another program to generate the look-up code and transfers it to the FPGA 

using a double hand-shake method. For each element of the array, the RT signals that 

the data is ready. The FPGA tells the RT that it is reading data and reads the data. After 

reading the data the FPGA informs the RT machine that the data is read and then waits 

for some time to allow the RT to read FPGA’s status. The RT updates the data with the 

next element and again lets the FPGA know that the data is ready. The look-up table 

consists of 8000 elements which is slightly less that the maximum size of the look-up 

table permitted by the FPGA. 
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Figure 113 – Step 2 – Finding the desired point of operation by calibration of the optical 

curve. 

In the step 2, as shown in the Figure 113, two loops are run in parallel. One of the loops 

generates a sinusoidal motion of the grating, truncated at the range limits. The other 

loop acquires the photo-detector signal simultaneously. The loop also compares the 

acquired data to find the maximum and minimum of the data range. These points give 

the upper and lower limits of the optical curve which in turn defines the optical curve. 

The desired point of operation is roughly at the mean of these values and is obtained in 

the next step shown in Figure 114. 
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Find setpoint

PIDPD Input

Find setpoint

PIDPD Input

 

Figure 114 – Step -3 (half screen) The setpoint is found and PID control with gain reversal 

and look-up table is implemented. 
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Figure 115 – Step 3- second half of the screen 

Figure 114 and Figure 115 show the third step of the program which runs the controller 

and also implements the gain reversal and non-linearity compensation using look-up 

table. The controller is fed with the gains and the setpoint obtained from averaging the 

maximum and minimum PD output. The controller output is truncated at the limits by the 

limit check blocks. The truncated output is then fed to the look-up table which generates 

the corresponding grating actuation voltage at the analog output. If the controller output 

reaches its limits then the gain reversal block activates. This block inverts the gain fed to 

the controller. It also keeps a count of the jumps with their directions. 


